Skip to main content

Advertisement

Log in

Shock-wave compression of silica gel as a model material for comets

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

A shock-wave compression experiment using synthesized silica gel was investigated as a model for a comet impact event on the Earth’s surface. The sample shocked at 20.7 GPa showed considerable structural changes, a release of water molecules, and the dehydration of silanol (Si–OH) that led to the formation of a new Si–O–Si network structure containing larger rings (e.g., six-membered ring of SiO4 tetrahedra). The high aftershock temperature at 20.7 GPa, which could be close to 800 °C, influenced the sample structure. However, some silanols, which were presumed to be the mutually hydrogen-bonded silanol group, remained at pressures >20.7 GPa. This type of silanol along with a small number of water molecules may remain even after shock compression at 30.9 GPa, although the intermediate structure of the sample recovered was similar to that of silica glass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Altwegg K, Balsiger H, Ba-Num A et al (2015) 67P/Churyumov-Gerasimenko, a Jupiter family comet with a high D/H ratio. Science 347(1261952):1–3

    Google Scholar 

  • Anderson JH Jr, Wickersheim KA (1964) Near infrared characterization of water and hydroxyl groups on silica surfaces. Surf Sci 2:252–260

    Article  Google Scholar 

  • Anedda A, Carbonaro CM, Clemente F, Corda L, Corpino R, Ricci PC (2003) Surface hydroxyls in porous silica: a Raman spectroscopy study. Mater Sci Eng C 23:1069–1072

    Article  Google Scholar 

  • Arasuna A, Okuno M, Okudera H, Mizukami T, Arai S, Katayama S, Koyano M, Ito N (2013a) Structural changes of synthetic opal by heat treatment. Phys Chem Miner 40:747–755

    Article  Google Scholar 

  • Arasuna A, Okuno M, Mizukami T, Akaogi M, Yokoyama T, Okudera H, Arai S (2013b) The role of water in coesite crystallization from silica gel. Eur J Miner 25:791–796

    Article  Google Scholar 

  • Benesi HA, Jones AC (1959) An infrared study of the water–silica gel system. J Phys Chem 63:179–182

    Article  Google Scholar 

  • Bergna HE (2006) Colloid chemistry of silica: An overview. In: Bergna HE, Roberts WO (eds) Colloidal silica fundamentals and applications. Taylor and Francis, Boca Ration, pp 9–35

    Google Scholar 

  • Bertoluzza A, Fagnano C, Morelli MA, Gottardi V, Guglielmi M (1982) Raman and infrared spectra on silica gel evolving toward glass. J Non-Cryst Solid 48:117–128

    Article  Google Scholar 

  • Brownlee D, Tsou P, Aléon J et al (2006) Comet 81P/Wild 2 under a microscope. Science 314:1711–1716

    Article  Google Scholar 

  • Davis KM, Tomozawa M (1996) An infrared spectroscopic study of water-related species in silica glasses. J Non-Cryst Solids 201:177–198

    Article  Google Scholar 

  • DeCarli PS, Jamieson JC (1959) Formation of an amorphous form of quartz under shock conditions. J Chem Phys 31:1675–1676

    Article  Google Scholar 

  • Galeener FL (1982a) Planar rings in vitreous silica. J Non-Cryst Solids 49:53–62

    Article  Google Scholar 

  • Galeener FL (1982b) Planar rings in glasses. Solid State Commun 44:1037–1040

    Article  Google Scholar 

  • Galeener FL, Geissberger AE (1983) Vibrational dynamics in 30Si-substituted vitreous SiO2. Phys Rev B 27:6199–6204

    Article  Google Scholar 

  • Graetsch H, Flörke OW, Miehe G (1985) The nature of water in chalcedony and opal-C from Brazilian agate Geodes. Phys Chem Miner 12:300–306

    Article  Google Scholar 

  • Greenberg JM (1998) Making a comet nucleus. Astron Astrophys 330:375–380

    Google Scholar 

  • Handke M, Mozgawa W (1993) Vibrational spectroscopy of the amorphous silicates. Vib Spectrosc 5:75–84

    Article  Google Scholar 

  • Hemley RJ, Mao HK, Bell PM, Mysen BO (1986) Raman spectroscopy of SiO2 glass at high pressure. Phys Rev Lett 57:747–750

    Article  Google Scholar 

  • Hench LL, West JK (1990) The sol–gel process. Chem Rev 90:33–72

    Article  Google Scholar 

  • Innocenzi P (2003) Infrared spectroscopy of sol-gel derived silica-based films: a spectra-microstructure overview. J Non-Cryst Solids 316:309–319

    Article  Google Scholar 

  • Inoue A, Okuno M, Okudera H, Mashimo T, Omurzak E, Katayama S, Koyano M (2010) Shock compression of synthetic opal. J Phys: Conf Ser 215(012147):1–5

    Google Scholar 

  • Kamiya K, Nasu H (1998) Structural and thermal change of alkoxy-derived silica gel fibers and films. Ceram Trans 81:21–28

    Google Scholar 

  • Kamiya K, Sakka S (1980) TiO2-SiO2 glasses prepared from metal alkoxides. J Mater Sci 15:2937–2939

    Article  Google Scholar 

  • Kamiya K, Dohkai T, Wada M, Hashimoto T, Matsuoka J, Nasu H (1998) X-ray diffraction of silica gels made by sol-gel method under different conditions. J Non Cryst Solids 240:202–211

    Article  Google Scholar 

  • Kemper F, Vriend WJ, Tielens AGGM (2004) The absence of crystalline silicates in the diffuse interstellar medium. Astrophys J 609:826–837

    Article  Google Scholar 

  • Krol DM, Van Lierop JG (1984) Raman study of the water adsorption on monolithic silica gels. J Non-Cryst Solids 68:163–166

    Article  Google Scholar 

  • Lasaga AC, Gibbs GV (1988) Quantum mechanical potential surfaces and calculations on minerals and molecular clusters. I. STO-3G and 6-31 G results. Phys Chem Miner 16:29–41

    Article  Google Scholar 

  • Marsh SP (1980) Los Alamos scientific laboratory shock Hugoniot Data. University California Press, pp 321

  • Mashimo T, Ozaki S, Nagayama K (1984) Keyed-powder gun for the oblique-impact shock study of solids in several 10 s of GPa region. Rev Sci Inst 55:226–230

    Article  Google Scholar 

  • McDonald RS (1958) Surface functionality of amorphous silica by infrared spectroscopy. J Phys Chem 62:1168–1178

    Article  Google Scholar 

  • McMillan PF, Wolf GH (1995) Vibrational spectroscopy of silicate liquids. Rev Miner Geochem 32:247–315

    Google Scholar 

  • Morbidelli A, Chambers J, Lunine I, Petit JM, Robert F, Valsecchi GB, Cyr KE (2000) Source regions and timescales for the delivery of water to the earth. Meteorit Planet Sci 35:1309–1320

    Article  Google Scholar 

  • Murray RA, Ching WY (1989) Electronic- and vibrational-structure calculation in models of the compressed SiO2 glass systems. Phys Rev B 39:1320–1331

    Article  Google Scholar 

  • Murray CA, Greytak TJ (1979) Intrinsic surface phonons in amorphous silica. Phys Rev B 20:3368–3387

    Article  Google Scholar 

  • Okuno M, Reynard B, Shimada Y, Syono Y, Willaime C (1999) A Raman spectroscopic study of shock-wave densification of vitreous silica. Phys Chem Miner 26:304–311

    Article  Google Scholar 

  • Orcel G, Phalippou J, Hench LL (1986) Structural changes of silica xerogels during low temperature dehydration. J Non-Cryst Solids 88:114–130

    Article  Google Scholar 

  • Orcel G, Hench LL, Artaki I, Jonas J, Zerda TW (1988) Effect of formamide additive on the chemistry of silica sol-gels II: gel structure. J Non-Cryst Solids 105:223–231

    Article  Google Scholar 

  • Rubio F, Rubio J, Oteo JL (1997) Further insights into the porous structure of TEOS derived silica gels. J Sol Gel Sci Technol 8:159–163

    Google Scholar 

  • Sharma SK, Matson DW, Philpotts JA, Roush TL (1984) Raman study of the structure of glasses along the join SiO2–GeO2. J Non-Cryst Solids 68:99–114

    Article  Google Scholar 

  • Shimada Y, Okuno M, Syono Y, Kikuchi M, Fukuoka K, Ishizawa N (2002) An X-ray diffraction study of shock-wave-densified SiO2 glasses. Phys Chem Miner 29:233–239

    Article  Google Scholar 

  • Stöffler D, Langenhorst F (1994) Shock metamorphism of quartz in nature and experiment: I. Basic observation and theory. Meteoritics 29:155–181

    Article  Google Scholar 

  • Stolen RH, Walrafen GE (1976) Water and its relation to broken bond defects in fused silica. J Chem Phys 64:2623–2631

    Article  Google Scholar 

  • Takabatake K (2000) Vitrification of albite crystal and structure change of albite glass by shock-wave compression. Master thesis of Kanazawa Univ

  • Tomeoka K, Yamahana Y, Sekine T (1999) Experimental shock metamorphism of the Murchison CM carbonaceous chondrite. Geochim Cosmochim Acta 63:3683–3703

    Article  Google Scholar 

  • Walrafen GE (1964) Raman spectral studies of water structure. J Chem Phys 40:3249–3256

    Article  Google Scholar 

  • Walrafen GE, Samanta SR (1978) Infrared absorbance spectra and interactions involving OH groups in fused silica. J Chem Phys 69:493–495

    Article  Google Scholar 

  • Whipple FL (1950) A comet model. I. The acceleration of comet Encke. Astrophys J 111:375–394

    Article  Google Scholar 

  • Whipple FL (1951) A comet model. II. Physical relations for comets and meteors. Astrophys J 113:464–475

    Article  Google Scholar 

Download references

Acknowledgments

A part of this work was supported by G-COE program of Kumamoto University (GCOE-JS2012-9). This work was also supported by Grant-Aid for JSPS Fellow Grant Number 255624.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akane Arasuna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arasuna, A., Okuno, M., Chen, L. et al. Shock-wave compression of silica gel as a model material for comets. Phys Chem Minerals 43, 493–502 (2016). https://doi.org/10.1007/s00269-016-0809-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-016-0809-6

Keywords

Navigation