Skip to main content

Advertisement

Log in

High-pressure elastic behavior of Ca4La6(SiO4)6(OH)2 a synthetic rare-earth silicate apatite: a powder X-ray diffraction study up to 9.33 GPa

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The compression behavior of a synthetic Ca4La6(SiO4)6(OH)2 has been investigated to about 9.33 GPa at 300 K using in situ angle-dispersive X-ray diffraction and a diamond anvil cell. No phase transition has been observed within the pressure range investigated. The values of zero-pressure volume V 0, K 0, and \(K_{0}^{'}\) refined with a third-order Birch–Murnaghan equation of state are V 0 = 579.2 ± 0.1 Å3, K 0 = 89 ± 2 GPa, and \(K_{0}^{'} = 10.9 \pm 0.8\). If \(K_{0}^{'}\) is fixed at 4, K 0 is obtained as 110 ± 2 GPa. Analysis of axial compressible modulus shows that the a-axis (K a0 = 79 ± 2 GPa) is more compressible than the c-axis (K c0 = 121 ± 7 GPa). A comparison between the high-pressure elastic response of Ca4La6(SiO4)6(OH)2 and the iso-structural calcium apatites is made. The possible reasons of the different elastic behavior between Ca4La6(SiO4)6(OH)2 and calcium apatites are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Angel RJ (2001) Equation of state. Rev Miner Geochem 41:35–60

    Article  Google Scholar 

  • Angel RJ, Bujak M, Zhao J, Gatta GD, Jacobsen SD (2007) Effective hydrostatic limits of pressure media for high-pressure crystallographic studies. J Appl Crystallogr 40:26–32

    Article  Google Scholar 

  • Ardanova LI, Get’man EI, Loboda SN, Prisedsky VV, Tkachenko TV, Marchenko VI, Antonovich VP, Chivireva NA, Chebishev KA, Lyashenko AS (2010) Isomorphous substitutions of rare earth elements for calcium in synthetic hydroxyapatites. Inorg Chem 49:10687–10693

    Article  Google Scholar 

  • Birch F (1947) Finite elastic strain of cubic crystals. Phys Rev 71:809–924

    Article  Google Scholar 

  • Brunet F, Allan DR, Redfern SAT, Angel RJ, Miletich R, Reichmann HJ, Sergent J, Hanfland M (1999) Compressibility and thermal expansivity of synthetic apatites, Ca5(PO4)3X with X = OH, F and Cl. Eur J Miner 11:1023–1035

    Google Scholar 

  • Cherniak DJ (2000) Rare earth element diffusion in apatite. Geochim Cosmochim Acta 64:3871–3885

    Article  Google Scholar 

  • Cockbain AG, Smith GV (1967) Alkaline-rare-earth silicate and germanate apatites. Miner Mag 36:411–421

    Article  Google Scholar 

  • Comodi P, Liu Y, Zanazzi PF, Montagnoli M (2001) Structural and vibrational behaviour of fluorapatite with pressure. Part I: in situ single-crystal X-ray diffraction investigation. Phys Chem Miner 28:219–224

    Article  Google Scholar 

  • Fleet ME, Liu XY (2005) High-pressure rare earth silicates: lanthanum silicate with barium phosphate structure, holmium silicate apatite, and lutetium disilicate type X. J Solid State Chem 178:3275–3283

    Article  Google Scholar 

  • Fleet ME, Liu XY (2007a) Hydrogen-carbonate ion in synthetic high-pressure apatite. Am Miner 92:1764–1767

    Article  Google Scholar 

  • Fleet ME, Liu XY (2007b) Coupled substitution of type A and B carbonate in sodium-bearing apatite. Biomaterials 28:916–926

    Article  Google Scholar 

  • Fleet ME, Pan YM (1997) Rare-earth elements in apatite: uptake from H2O-bearing phosphate-fluoride melts and the role of volatile components. Geochim Cosmochim Acta 61:4745–4760

    Article  Google Scholar 

  • Fleet ME, Liu XY, Pan YM (2000) Site preference of rare earth elements in hydroxyapatite [Ca10(PO4)6(OH)2]. J Solid State Chem 149:391–398

    Article  Google Scholar 

  • Fleet ME, Liu XY, Shieh SR (2010) Structural change in lead fluorapatite at high pressure. Phys Chem Miner 37:1–9

    Article  Google Scholar 

  • Gatta GD, Lee Y, Kao CC (2009) Elastic behavior of vanadinite, Pb10(VO4)6Cl2, a microporous non-zeolitic mineral. Phys Chem Miner 36:311–317

    Article  Google Scholar 

  • Gilmore RS, Katz JL (1982) Elastic properties of apatites. J Mater Sci 17:1131–1141

    Article  Google Scholar 

  • Hadrich A, Lautie A, Mhiri T (2001) Monoclinic to hexagonal phase transition and hydroxyl motion in calcium-lead hydroxyapatites studied by Raman spectroscopy. J Raman Spectrosc 32:33–40

    Article  Google Scholar 

  • Hammersley J (1998) Fit2D report. European Synchrotron Radiation Facility, Grenoble

    Google Scholar 

  • He Q, Liu X, Hu XM, Deng LW, Chen ZQ, Li BS, Fei YW (2012) Solid solutions between lead fluorapatite and lead fluorvandate apatite: compressibility determined by using a diamond-anvil cell coupled with synchrotron X-ray diffraction. Phys Chem Miner 39:219–226

    Article  Google Scholar 

  • Hughes JM, Cameron M, Mariano AN (1991) Rare-earth-element ordering and structural variations in natural rare-earth-bearing apatites. Am Miner 76:1165–1173

    Google Scholar 

  • Irving AJ (1978) A review of experimental studies of crystal/liquid trace element partitioning. Geochim Cosmochim Acta 42:743–770

    Article  Google Scholar 

  • Larson AC, Von Dreele RB (2004) General structure analysis system (GSAS). Los Alamos National Laboratory Report LAUR 86-748

  • Lee KKM, O’Neill B, Panero WR, Shim SH, Benedetti LR, Jeanloz R (2004) Equations of state of the high-pressure phases of a natural peridotite and implications for the earth’s lower mantle. Earth Planet Sci Lett 223:381–393

    Article  Google Scholar 

  • Liu X, Shieh SR, Fleet ME, Akhmetov A (2008) High-pressure study on lead fluorapatite. Am Miner 93:1581–1584

    Article  Google Scholar 

  • Liu X, Shieh SR, Fleet ME, Zhang LF, He Q (2011a) Equation of state of carbonated hydroxyapatite at ambient temperature up to 10 GPa: significance of carbonate. Am Miner 96:74–80

    Article  Google Scholar 

  • Liu X, Fleet ME, Shieh SR, He Q (2011b) Synthetic lead bromapatite: X-ray structure at ambient pressure and compressibility up to about 20 GPa. Phys Chem Miner 38:397–406

    Article  Google Scholar 

  • Mao HK, Bell PM, Shaner JW, Steinberg DJ (1978) Specific volume measurements of Cu, Mo, Pt, and Au and calibration of ruby R1 fluorescence pressure gauge for 0.006 to 1 Mbar. J Appl Phys 49:3276–3283

    Article  Google Scholar 

  • Matsukage KN, Ono S, Kawamoto T, Kikegawa T (2004) The compressibility of a natural apatite. Phys Chem Miner 31:580–584

    Article  Google Scholar 

  • Murayama JK, Makai S, Kato M, Kumazawa M (1986) A dense polymorph of Ca3(PO4)2: a high-pressure phase of apatite decomposition and its geochemical significance. Phys Earth Planet Interiors 44:293–303

    Article  Google Scholar 

  • Nakayama S, Sakamoto M (1998) Electrical properties of new type high oxide ionic conductor RE10Si6O27 (RE = La, Pr, Nd, Sm, Gd, Dy). J Eur Ceram Soc 18:1413–1418

    Article  Google Scholar 

  • Nakayama S, Kageyama T, Aono H, Sadaoka Y (1995) Ionic conductivity of lanthanoid silicates, Ln10(SiO4)6O3 (Ln = La, Nd, Sm, Gd, Dy, Y, Ho, Er and Yb). J Mater Chem 5:1801–1805

    Article  Google Scholar 

  • Nakayama S, Sakamoto M, Higuchi M, Kodaira K, Sato M, Kakita S, Suzuki T, Itoh K (1999) Oxide ionic conductivity of apatite type Nd9.33(SiO4)6O2 single crystal. J Eur Ceram Soc 19:507–510

    Article  Google Scholar 

  • Pan Y, Fleet ME (2002) Compositions of the apatite-group minerals: substitution mechanisms and controlling factors. Rev Miner Geochem 48:13–49

    Article  Google Scholar 

  • Prowatke S, Klemme S (2006) Trace element partitioning between apatite and silicate melts. Geochim Cosmochim Acta 70:4513–4527

    Article  Google Scholar 

  • Serret A, Cabanas MV, Vallet-Regi M (2000) Stabilization of calcium oxyapatites with lanthanum (III)-created anionic vacancies. Chem Mater 12:3836–3841

    Article  Google Scholar 

  • Thomson P, Cox DE, Hastings JB (1987) Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al2O3. J Appl Crystallogr 20:79–83

    Article  Google Scholar 

  • Toby BH (2001) EXPGUI, a graphical user interface for GSAS. J Appl Crystallogr 34:210–213

    Article  Google Scholar 

  • Wang C, Liu XY, Fleet ME, Feng SH, Xu RR (2006) High-pressure synthesis and single-crystal structure refinement of gadolinium holmium silicate hydroxyapatite Gd4.33Ho4.33(SiO4)6(OH)2. J Solid State Chem 179:2245–2250

    Article  Google Scholar 

  • Watson EB, Capobainco CJ (1981) Phosphorus and the rare-earth elements in felsic magmas: an assessment of the role of apatite. Geochim Cosmochim Acta 45:2349–2358

    Article  Google Scholar 

  • Watson EB, Green DH (1981) Apatite/liquid partition coefficients for the rare-earth elements and strontium. Earth Planet Sci Lett 56:405–421

    Article  Google Scholar 

  • Watson EB, Harrison TM (1984) Accessory minerals and the geochemical evolution of crustal magmatic systems: a summary and prospectus of experimental approaches. Phys Earth Planet Interiors 35:19–30

    Article  Google Scholar 

  • Wei SY, Ma MN, Fan DW, Yang J, Zhou WG, Li BS, Chen ZQ, Xie HS (2013) Compressibility of mimetite and pyromorphite at high pressure. High Press Res 33:27–34

    Article  Google Scholar 

  • Wendt AS, Vidal O, Chadderton LT (2002) Experimental evidence for the pressure dependence of fission track annealing in apatite. Earth Planet Sci Lett 201:593–607

    Article  Google Scholar 

  • White TJ, Dong ZL (2003) Structural derivation and crystal chemistry of apatites. Acta Crystallogr B 59:1–16

    Article  Google Scholar 

  • Xie H, Zhang Y, Xu HG, Hou W, Guo J, Zhao H (1993) A new method of measurement for elastic wave velocities in minerals and rocks at high temperature and high pressure and its significance. Sci China, Ser B 36:1276–1280

    Google Scholar 

  • Zhai SM, Xue WH, Yamazaki D, Shan SM, Ito E, Tomioka N, Shimojuku A, Funakoshi K (2011) Compressibility of strontium orthophosphate Sr3(PO4)2 at high pressure. Phys Chem Miner 38:357–361

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant Nos. 41004035, 41374107, and 41274105) and Western doctor special fund of the West Light Foundation of The Chinese Academy of Sciences (2011, to Fan Dawei), the West Light Foundation of The Chinese Academy of Sciences (to Yonggang Liu). Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dawei Fan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, D., Wei, S., Ma, M. et al. High-pressure elastic behavior of Ca4La6(SiO4)6(OH)2 a synthetic rare-earth silicate apatite: a powder X-ray diffraction study up to 9.33 GPa. Phys Chem Minerals 41, 85–90 (2014). https://doi.org/10.1007/s00269-013-0626-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-013-0626-0

Keywords

Navigation