Skip to main content

Advertisement

Log in

On the crystal structure and compressional behavior of talc: a mineral of interest in petrology and material science

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The crystal structure of a natural triclinic talc (1Tc polytype) [with composition: (Mg2.93Fe0.06)Σ2.99(Al0.02Si3.97)Σ3.99O10(OH)2.10] has been investigated by single-crystal X-ray diffraction at 223 and 170 K and by single-crystal neutron diffraction at 20 K. Both the anisotropic X-ray refinements (i.e. at 223 and 170 K) show that the two independent tetrahedra are only slightly distorted. For the two independent Mg-octahedra, the bond distances between cation-hydroxyl groups are significantly shorter than the others. The ditrigonal rotation angle of the six-membered ring of tetrahedra is modest (α ~ 4°). The neutron structure refinement shows that the hydrogen-bonding scheme in talc consists of one donor site and three acceptors (i.e. trifurcated configuration), all the bonds having O···O ≤ 3.38 Å, H···O ~ 2.8 Å, and O–H···O ~ 111–116°. The three acceptors belong to the six-membered ring of tetrahedra juxtaposed to the octahedral sheet. The vibrational regime of the proton site appears being only slightly anisotropic. The elastic behavior of talc was investigated by means of in situ synchrotron single-crystal diffraction up to 16 GPa (at room temperature) using a diamond anvil cell. No evidence of phase transition has been observed within the pressure range investigated. PV data fit, with an isothermal third-order Birch-Murnaghan equation of state, results as follows: V 0 = 454.7(10) Å3, K T0 = 56(3) GPa, and K′ = 5.4(7). The “Eulerian finite strain” versus “normalized stress” plot yields: Fe(0) = 56(2) GPa and K′ = 5.3(5). The compressional behavior of talc is strongly anisotropic, as reflected by the axial compressibilities (i.e. β(a):β(b):β(c) = 1.03:1:3.15) as well as by the magnitude and orientation of the unit-strain ellipsoid (with ε 1:ε 2:ε 3 = 1:1.37:3.21). A comparison between the elastic parameters of talc obtained in this study with those previously reported is carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agilent (2012) Xcalibur CCD system, CrysAlis Software system

  • Angel RJ (2000) Equation of state. In: Hazen RM, Downs RT (eds) High-temperature and high-pressure crystal chemistry, reviews in mineralogy and geochemistry, vol 41. Mineralogical Society of America and Geochemical Society, Washington, DC, pp 35–59

    Google Scholar 

  • Angel RJ (2001) EOS-FIT V6.0. Computer program (http://www.rossangel.com/)

  • Angel RJ (2011) Win_Strain V4.11. Computer program (http://www.rossangel.com/)

  • Angel RJ, Bujak M, Zhao J, Gatta GD, Jacobsen SD (2007) Effective hydrostatic limits of pressure media for high-pressure crystallographic studies. J Appl Crystallogr 40:26–32

    Article  Google Scholar 

  • Bailey SW (1984) Crystal chemistry of the true micas. In: Bailey SW (ed) Micas, review in mineralogy, vol 13. Mineralogical Society of America, Washington, DC, pp 13–60

    Google Scholar 

  • Bailey SW (1988) Introduction; Polytypism of 1:1 layer silicates. In: Bailey SW (ed) Hydrous phyllosilicates (Exclusive of Micas), review in mineralogy, vol 19. Mineralogical Society of America, Washington, DC, pp 1–27

    Google Scholar 

  • Barnes JD, Selverstone J, Sharp ZD (2004) Interactions between serpentinite devolatilization, metasomatism and strike-slip strain localization during deep-crustal shearing in the Eastern Alps. J Metamorph Geol 22:283–300

    Article  Google Scholar 

  • Birch F (1947) Finite elastic strain of cubic crystal. Phys Rev 71:809–824

    Article  Google Scholar 

  • Brigatti MF, Guggenheim S (2002) Mica crystal chemistry and the influence of pressure, temperature, and solid solution on atomistic models. In: Mottana A, Sassi FP, Thompson JB Jr, Guggenheim S (eds) Micas: Crystal Chemistry and Metamorphic Petrology, Review in Mineralogy and Geochemistry, vol 46. Mineralogical Society of America and Geochemical Society, Washington, DC

    Google Scholar 

  • Cannat M (1993) Emplacement of mantle rocks in the seafloor at mid-ocean ridges. J Geophys Res 98:4163–4172

    Article  Google Scholar 

  • Chinnery NJ, Pawley AR, Clark SM (1999) In situ observation of the formation of 10 angstrom phase from talc plus H2O at mantle pressures and temperatures. Science 286:940–942

    Article  Google Scholar 

  • Comodi P, Fumagalli P, Nazzareni S, Zanazzi PF (2005) The 10 Å phase: crystal structure from single-crystal X-ray data. Am Miner 90:1012–1016

    Article  Google Scholar 

  • Coppens P, Leiserowitz L, Rabinovich D (1965) Calculation of absorption corrections for camera and diffractometer data. Acta Crystallogr 18:1035–1038

    Article  Google Scholar 

  • Dellisanti F, Valdrè G (2008) Linear relationship between thermo-dehydroxylation and induced-strain by mechanical processing in vacuum: the case of industrial kaolinite, talc and montmorillonite. Int J Miner Process 88:94–99

    Article  Google Scholar 

  • Dellisanti F, Valdrè G (2010) On the high-temperature structural behaviour of talc (Mg3Si4O10(OH)2) to 1600°C: effect of mechanical deformation and strain. Philos Mag 90:2443–2457

    Article  Google Scholar 

  • Dellisanti F, Valdrè G, Mondonico M (2009) Changes of the main physical and technological properties of talc due to mechanical strain. Appl Clay Sci 42:398–404

    Article  Google Scholar 

  • Duffy T, Wang Y (1998) Pressure-volume-temperature equations of state. In: Hemley RJ (ed) Ultrahigh-pressure mineralogy: physics and chemistry of the earth’s deep interior, review in mineralogy and geochemistry, vol 37. Mineralogical Society of America and Geochemical Society, Washington, DC, pp 425–457

    Google Scholar 

  • Ďurovič S, Weiss Z (1983) Polytypism of pyrophyllite and talc. Part I. OD interpretation and MDO polytypes. Silikáty 27:1–8

    Google Scholar 

  • Evans BW, Guggenheim S (1988) Talc, pyrophyllite, and related minerals. In: Bailey SW (ed) Hydrous phyllosilicates (Exclusive of Micas), review in mineralogy, vol 19. Mineralogical Society of America, Washington, DC, pp 225–294

    Google Scholar 

  • Evans BW, Johannes W, Otterdoom H, Trommsdorff V (1976) Stability of chrysotile and antigorite in the serpentine multisystem. Schweiz Mineral Petrogr Mitt 56:79–93

    Google Scholar 

  • Fumagalli P, Stixrude L, Poli S, Snyder D (2001) The 10 angstrom phase: a high-pressure expandable sheet silicate stable during subduction of hydrated lithosphere. Earth Planet Sci Lett 186:125–141

    Article  Google Scholar 

  • Gartner AR, Gartner AN (2002) Burgum im schönen Pfitschtal. Tipografia Novaprint Cavalese, p 126

  • Gatta GD, Rotiroti N, Pavese A, Lotti P, Curetti N (2009) Structural evolution of a 3T phengite mica up to 10 GPa: an in situ single-crystal X-ray diffraction study. Z Kristallogr 224:302–310

    Article  Google Scholar 

  • Gatta GD, Rotiroti N, Pavese A, Lotti P, Curetti N (2010) Structural evolution of a 2M 1 phengite mica up to 11 GPa: an in situ single-crystal X-ray diffraction study. Phys Chem Miner 37:581–591

    Article  Google Scholar 

  • Gatta GD, McIntyre GJ, Sassi R, Rotiroti N, Pavese A (2011a) Hydrogen-bond and cation partitioning in 2M 1-muscovite: a single-crystal neutron-diffraction study at 295 and 20 K. Am Miner 96:34–41

    Article  Google Scholar 

  • Gatta GD, Merlini M, Rotiroti N, Curetti N, Pavese A (2011b) On the crystal chemistry and elastic behavior of a phlogopite 3T. Phys Chem Miner 38:655–664

    Article  Google Scholar 

  • Gatta GD, Merlini M, Liermann H-P, Rothkirch A, Gemmi M, Pavese A (2012) The thermoelastic behavior of clintonite up to 10 GPa and 1,000°C. Phys Chem Miner 39:385–397

    Article  Google Scholar 

  • Gleason AE, Parry S, Pawley A, Jeanloz R, Clark SM (2008) Pressure-temperature studies of talc plus water using X-ray diffraction. Am Miner 93:1043–1050

    Article  Google Scholar 

  • Gruner JW (1934) The crystal structures of talc and pyrophyllite. Z Kristallogr 88:412–419

    Google Scholar 

  • Guggenheim S, Eggleton RA (1987) Modulated 2:1 layer silicates: review, systematics, and predictions. Am Miner 72(724):738

    Google Scholar 

  • Guggenheim S, Eggleton RA (1988) Crystal chemistry, classification and identification of modulated layer silicates. In: Bailey SW (ed) Hydrous phyllosilicates (Exclusive of Micas), reviews in mineralogy, vol 19. Mineralogical Society of America, Washington, DC, pp 675–725

    Google Scholar 

  • Hendricks SB (1938) The crystal structure of talc and pyrophyllite. Z Kristallogr 99:264–274

    Google Scholar 

  • Howard JAK, Johnson O, Schultz AJ, Stringer AM (1987) Determination of the neutron absorption cross section for hydrogen as a function of wavelength with a pulsed neutron source. J Appl Crystallogr 20:120–122

    Article  Google Scholar 

  • Klotz S, Chervin J-C, Munsch P, Le Marchand G (2009) Hydrostatic limits of 11 pressure transmitting media. J Phys D (Appl Phys) 42:075413

    Article  Google Scholar 

  • Larson AC (1967) Inclusion of secondary extinction in least-squares calculations. Acta Crystallogr 23:664–665

    Article  Google Scholar 

  • Lehmann MS, Kuhs W, McIntyre GJ, Wilkinson C, Allibon J (1989) On the use of a small two-dimensional position-sensitive detector in neutron diffraction. J Appl Crystallogr 22:562–568

    Article  Google Scholar 

  • Mainprice D, Le Page Y, Rodgers J, Jouanna P (2008) Ab initio elastic properties of talc from 0 to 12 GPa: interpretation of seismic velocities at mantle pressures and prediction of auxetic behaviour at low pressure. Earth Planet Sci Lett 274:327–338

    Article  Google Scholar 

  • Mao HK, Xu J, Bell PM (1986) Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J Geophys Res 91:4673–4676

    Article  Google Scholar 

  • Mével C (2003) Serpentinization of abyssal peridotites at mid-ocean ridges. Comptes Rendus Géosci 335:825–852

    Article  Google Scholar 

  • Murnaghan FD (1937) Finite deformations of an elastic solid. Am J Math 49:235–260

    Article  Google Scholar 

  • Mysen BO, Ulmer P, Konzett J, Schmidt MW (1998) The upper mantle near convergent plate boundaries. In: Hemley RJ (ed) Ultrahigh-pressure mineralogy: physics and chemistry of the earth’s deep interior, review in mineralogy, vol 37. Mineralogical Society of America, Washington, DC, pp 97–138

    Google Scholar 

  • Nespolo M, Ďurovič S (2002) Crystallographic basis of polytypism and twinning in micas. In: Mottana A, Sassi FP, Thompson JB Jr, Guggenheim S (eds) Micas: crystal chemistry and metamorphic petrology, review in mineralogy and geochemistry, vol 46. Mineralogical Society of America and Geochemical Society, Washington, DC, pp 155–279

    Google Scholar 

  • Nespolo M, Ferraris G (2001) Effects of the stacking faults on the calculated electron density of mica polytypes—the Ďurovič effect. Eur J Miner 13:1035–1045

    Article  Google Scholar 

  • Parry SA, Pawley AR, Jones RL, Clark SM (2007) An infrared spectroscopic study of the OH stretching frequencies of talc and 10-Å phase to 10 GPa. Am Miner 92:525–531

    Article  Google Scholar 

  • Pawley AR, Wood BJ (1995) The high-pressure stability of talc and 10 Å phase: potential storage sites for H2O in subduction zones. Am Miner 80:998–1003

    Google Scholar 

  • Pawley AR, Redfern SAT, Wood BJ (1995) Thermal expansivities and compressibilities of hydrous phases in the system MgO-SiO2-H2O: talc, phase A and 10-angstrom phase. Contrib Miner Petrol 122:301–307

    Article  Google Scholar 

  • Pawley AR, Clark SM, Chinnery NJ (2002) Equation of state measurements of chlorite, pyrophyllite, and talc. Am Miner 87:1172–1182

    Google Scholar 

  • Perdikatsis B, Burzlaff H (1981) Strukturverfeinerung am Talk Mg3[(OH)2Si4O10]. Z Kristallogr 156:177–186

    Article  Google Scholar 

  • Poli S, Schmidt MW (2002) Petrology of subducted slabs. Annu Rev Earth Planet Sci 30:207–235

    Article  Google Scholar 

  • Rayner JH, Brown G (1973) The crystal structure of talc. Clays Clay Miner 21:103–114

    Article  Google Scholar 

  • Robinson K, Gibbs GV, Ribbe PH (1971) Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Science 172:567–570

    Article  Google Scholar 

  • Scott HP, Liu Z, Hemley RJ, Williams Q (2007) High-pressure infrared spectra of talc and lawsonite. Am Miner 92:1814–1820

    Article  Google Scholar 

  • Sears VF (1986) Neutron Scattering Lengths and Cross-Sections. In: Sköld K, Price DL (eds) Neutron Scattering, Methods of Experimental Physics, vol 23A. Academic Press, New York, pp 521–550

    Chapter  Google Scholar 

  • Sheldrick GM (1997) SHELX-97. Programs for crystal structure determination and refinement. University of Göttingen, Germany

    Google Scholar 

  • Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A64:112–122

    Google Scholar 

  • Stixrude L (2002) Talc under tension and compression: spinodal instability, elasticity, and structure. J Geophys Res 107-B12:2327

    Article  Google Scholar 

  • Trommsdorff V, Sanches-Vizcaino VL, Gomez-Pugnaire MT, Müntener O (1998) High pressure breakdown of antigorite to spinifex-textured olivine and orthopyroxene, SE Spain. Contrib Miner Petrol 132:139–148

    Article  Google Scholar 

  • Weiss Z, Ďurovič S (1984) Polytypism of pyrophyllite and talc. Silikáty 28:289–309

    Google Scholar 

  • Wilkinson C, Khamis HW, Stansfield RFD, McIntyre GJ (1988) Integration of single-crystal reflections using area multidetectors. J Appl Crystallogr 21:471–478

    Article  Google Scholar 

  • Wilson AJC, Prince E (1999) International Tables for X-ray Crystallography, Volume C: Mathematical, physical and chemical tables (2nd edn). Kluwer Academic, Dordrecht

    Google Scholar 

  • Zanazzi PF, Pavese A (2002) Behavior of micas at high pressure and high temperature. In: Mottana A, Sassi FP, Thompson JB Jr, Guggenheim S (eds) Micas: crystal chemistry and metamorphic petrology, review in mineralogy and geochemistry, vol 46. Mineralogical Society of America and Geochemical Society, Washington, DC, pp 99–116

    Google Scholar 

Download references

Acknowledgments

The authors thank PETRA-III (Hamburg) and ILL (Grenoble) for the allocation of synchrotron and neutron beam time, respectively. This work was funded by the Italian Ministry of University and Research, MIUR-Project: 2010EARRRZ_003. S. Nazzareni, an anonymous reviewer, and the Editor M. Rieder are thanked.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Diego Gatta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gatta, G.D., Merlini, M., Valdrè, G. et al. On the crystal structure and compressional behavior of talc: a mineral of interest in petrology and material science. Phys Chem Minerals 40, 145–156 (2013). https://doi.org/10.1007/s00269-012-0554-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-012-0554-4

Keywords

Navigation