Skip to main content
Log in

Low temperature magnetism and Mössbauer spectroscopy study from natural goethite

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

In this work a magnetic characterization was made of natural goethite from Burkina Faso, Africa, by using low temperature magnetization curves, hysteresis loops, Mössbauer spectroscopy at room temperature and 4.2 K, and AC susceptibility from 10 to 400 K. The samples are from two distinct geological sites that underwent different weathering processes. All measurements point to the occurrence of typical high coercivity goethite. Through Mössbauer spectroscopy sample BL44, from Gangaol, northeast Burkina Faso showed relaxation effects due to a wide distribution of grain size, including superparamagnetism threshold. AC susceptibility also supports this interpretation. The sample BL50 from Bonga in Burkina Faso is associated with lateritic Ni and in addition to goethite this sample also contained magnetite, as determined by Verwey transition in low temperature measurements as well as a small content of hematite identified by Mössbauer spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agudelo AC, Marco JF, Gancedo JR, Perez-Alcazar GA (2002) Fe-Mn-Al-C alloys: a study of their corrosion behavior in SO2 environments. Hyp Interact 139:141–152

    Article  Google Scholar 

  • Barrero CA, Vandenberghe RE, De Grave E, da Costa MG (1996) A qualitative analysis of the Mössbauer spectra of aluminous goethites based on existing models. In: Ortalli I (ed) Proceedings of the international conference on the applications of the Mössbauer effect (ICAME-95). Italian Physical Society, Italy, pp 717–720

  • Barrero CA, Betancur JD, Greneche JM, Goya GF, Berquó TS (2006) Magnetism in non-stoichiometric goethite of varying total water content and surface area. Geophys J Int 164:331–339

    Article  Google Scholar 

  • Blot A (2002) Signification des ferruginisations des formations néoprotérozoïques du Nord-Burkina Faso (Afrique de l’Ouest). C R Geosci 334:909–915

    Article  Google Scholar 

  • Blot A (2004) Caractérisation des chapeaux de fer en milieu latéritique cuirassé. C R Geosci 336:1473–1480

    Article  Google Scholar 

  • Brand RA (1987) Improving the validity of hyperfine field distributions from metallic alloys. Part I: unpolarized source. Nucl Instrum Methods B 28:398–405

    Article  Google Scholar 

  • Bocquet S, Kennedy SJ (1992) The Néel temperature of fine particle goethite. J Magn Magn Mat 109:260–264

    Article  Google Scholar 

  • Bocquet S, Pollard RJ, Cashion JD (1992) Dynamic magnetic phenomena in fine-particle goethite. Phys Rev B 46:11657–11664

    Article  Google Scholar 

  • Coey JMD, Barry A, Brotto J-M, Rakoto H, Brennan S, Mussel WN, Collomb A, Fruchart D (1995) Spin flop in goethite. J Phys: Condens Matter 7:759–768

    Article  Google Scholar 

  • Cornell RM, Schwertmann U (1996) The Iron oxides—structure, properties, reactions, occurrence and uses. Weinhein, New York

    Google Scholar 

  • de Boer CB, Dekkers MJ (1998) Thermomagnetic behavior of haematite and goethite as a function of grain size in various non-saturating fields. Geophys J Int 133:541–552

    Article  Google Scholar 

  • De Grave E, Barrero CA, Costa GM, Vandenberghe RE, Van San E (2002) Mössbauer spectra of α- and γ-polymorphs of FeOOH and Fe2O3: effects of poor crystallinity and of Al-for-Fe substitution. Clay Miner 37:591–606

    Article  Google Scholar 

  • Dekkers MJ (1989a) Magnetic properties of natural goethite-I. Grain-size dependence of some low–and high-field related rock magnetic parameters, measured at room temperature. Geophys J Int 97:323–340

    Article  Google Scholar 

  • Dekkers MJ (1989b) Magnetic properties of natural goethite-II. TRM behavior during thermal and alternating demagnetization and low temperature. Geophys J Int 97:341–355

    Article  Google Scholar 

  • Dekkers MJ (1990) Magnetic properties of natural goethite-III. Magnetic behavior and properties of minerals originating from goethite dehydration during thermal demagnetization. Geophys J Int 103:233–250

    Article  Google Scholar 

  • Dekkers MJ, Rochette P (1992) Magnetic properties of chemical remanent magnetization in synthetic and natural goethite: prospects for a natural remanent magnetization/thermoremament magnetization ratio paleomagnetic stability test? J Geophys Res 97:17291–17307

    Article  Google Scholar 

  • Dunlop D, Ozdemir O (1997) Rock magnetism: fundamentals and frontiers. Cambridge University Press, Cambridge

    Google Scholar 

  • Fitzpatrick RW (1988) Iron compounds as indicators of pedogenic processes: examples from the southern hemisphere, in Iron in soils and clay minerals. In: Stucki JW, Goodman BA, Schwertmann U (eds) D. Reidel Publishing Company, Dordrecht, Holland, pp 351–396

    Google Scholar 

  • Forsyth JB, Hedley IG, Johnson CE (1968) The magnetic struture and hyperfine field of goethite (α-FeOOH). J Phys C 1:179–188

    Article  Google Scholar 

  • Fysh SA, Clark PE (1982) Aluminous goethite: a Mössbauer study. Phys Chem Miner 8:180–187

    Article  Google Scholar 

  • Guyodo Y, Mostrom A, Penn RL, Banerjee SK (2003) From nanodots to nanorods: oriented aggregation and magnetic evolution of nanocrystalline goethite. Geophys Res Lett 30:1512–1515

    Article  Google Scholar 

  • Imbernon RAL, Blot A, Oliveira SMB, Magat P (1999) Os chapéus de ferro associados ao depósito de Pb-Zn-Ag na região de Canoas, Adrianópolis, PR—Evolução geoquímica e mineralógica. Geochim Brasiliensis 13:145–161

    Google Scholar 

  • Kilcoyne SH, Ritter C (1997) The influence of Al on the magnetic properties of synthetic goethite. Physica B 234–236:620–621

    Article  Google Scholar 

  • Lavaud T (2002) Paléo-chapeaux de fer au sein des cuirasses latéritiques: exemple du gîte nickélifére de Bonga, Burkina Faso. Mémoire en vue de l’obtention du Diplome d’Estudes Supérieures Universitaires, Université Paul Sabatier—Toulouse III, France

  • Lavaud T, Beziat D, Blot A, Debta P, Lompo M, Martin F, Ouangrawa M, Tollon F (2004) Paleo-gossans within the lateritic iron crust: example of the nickeliferous prospect of Bonga, Burkina Faso. J Afr Earth Sci 39:465–471

    Article  Google Scholar 

  • Marco JF, Gracia M, Gancedo JR, Martín-Luengo MA, Joseph G (2000) Characterization of the corrosion products formed on carbon steel after exposure to the open atmosphere in the Antarctic and Easter Island. Corros Sci 42:753–771

    Article  Google Scholar 

  • Mathé P-E, Rochette P, Vandamme D, Fillion G (1999) Néel temperatures of synthetic substituted goethites and their rapid determination using low-field susceptibility curves. Geophys Res Lett 26:2125–2128

    Article  Google Scholar 

  • Murad E (1996) Magnetic properties of microcrystalline iron (III) oxides and related materials as reflected in their Mössbauer spectra. Phys Chem Miner 23:248–262

    Article  Google Scholar 

  • Murad E (1982) The characterization of goethite by Mössbauer spectroscopy. Am Mineral 67:1007–1011

    Google Scholar 

  • Murad E, Cashion J (2004) Mössbauer spectroscopy of environmental materials and their utilization. Kluwer, Boston

    Google Scholar 

  • Özdemir Ö, Dunlop DJ (1996) Thermoremanence and Néel temperature of goethite. Geophys Res Lett 23:921–924

    Article  Google Scholar 

  • Özdemir Ö, Moskowitz BM, Dunlop DJ (1993) The effect of oxidation on the Verwey transition in magnetite. Geophys Res Lett 20:1671–1674

    Google Scholar 

  • Parisot JC, Ventose V, Grandin G, Bourges F, Debat P, Tollon F, Millo L (1995) Dynamique de l’or et d’autres minéraux lourds dans un profil d’altération cuirassé du Burkina Faso, Afrique de l’Ouest. Intérêt pour l’interpretation de la mise en place des matériaux constituant les cuirasses de haut glacis. C R Acad Sci Paris 321:295–302

    Google Scholar 

  • Rochette P, Fillion G (1989) Field and temperature behavior of remanence in synthetic goethite: paleomagnetic implications. Geophys Res Lett 16:851–854

    Google Scholar 

  • Trivedi P, Axe L, Dyer J (2001) Adsorption of metal ions onto goethite: single-adsorbate and competitive systems. Colloids Surf A 191:107–121

    Article  Google Scholar 

  • Trolard F, Bourrie G, Jeanroy E, Herbillon AJ, Martin H (1995) Trace metals in natural iron oxides from laterites: a study using selective kinetic extraction. Geochim Cosmochim Acta 59:1285–1297

    Article  Google Scholar 

  • Vandenberghe RE, De Grave E, Landuydt C, Bowen LH (1990) Some aspects concerning the characterization of iron oxides and hydroxides insoils and clays. Hyp Interact 53:175–196

    Article  Google Scholar 

  • Vandenberghe RE, Barrero CA, Costa GM, Van San E, De Grave E (2000) Mössbauer characterization of iron oxides and (oxy)hydroxides: the present state of the art. Hyp Interact 126:247–259, Hyp Interact 53:175–196

    Article  Google Scholar 

  • Van der Woude F, Dekker AJ (1966) Mössbauer effect in α-FeOOH. Phys Stat Sol 13:181–193

    Google Scholar 

Download references

Acknowledgments

TSB thanks FAPESP (Fundação de Amaparo à Pesquisa do Estado de São Paulo) for support (grant 00/06066-3). This study was supported by National Science Foundation (NSF) grant EAR 0311869 from the Biogeosciences program. The Institute for Rock Magnetism (IRM) is funded by NSF and the W. M. Keck Foundation, the Earth Science Division of the US National Science Foundation and the University of Minnesota. This is IRM publication # 0507.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. S. Berquó.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berquó, T.S., Imbernon, R.A.L., Blot, A. et al. Low temperature magnetism and Mössbauer spectroscopy study from natural goethite. Phys Chem Minerals 34, 287–294 (2007). https://doi.org/10.1007/s00269-007-0147-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-007-0147-9

Keywords

Navigation