Skip to main content

Advertisement

Log in

Keystone Species, Forest and Landscape: A Model to Select Protected Areas

  • Published:
Environmental Management Aims and scope Submit manuscript

Abstract

The selection of forest fragments for conservation is usually based on spatial parameters as forest size and canopy integrity. This strategy assumes that chosen fragments present high conservation status, ensuring biodiversity and ecological functions. We argue that a well-preserved forest fragment that remains connected by the landscape structure, does not necessarily hold attributes that ensure the presence of keystone species. We also discuss that the presence of keystone species does not always mean that it has the best conditions for its occurrence and maintenance. We developed a model to select areas in forest landscapes to be prioritized for protection based on suitability curves that unify and compare spatial indicators of three categories: forest fragment quality, landscape quality, and environmental conditions for the occurrence of a keystone species. We use a case study to compare different suitability degrees for Euterpe edulis presence, considered an important functional element in Atlantic Forest (São Paulo, Brazil) landscapes and a forest resource for local people. The results show that the identification of medium or advanced stage fragments as singular indicator of forest quality does not guarantee the existence or maintenance of this keystone species. Even in some well-preserved forest fragments, connected to others and with palm presence, the reverse J-shaped distribution of the population size structure is not sustained and these forests continue to be threatened due to human disturbances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aguilar C, Herrero J, Polo MJ (2010) Topographic effects on solar radiation distribution in mountainous watersheds and their influence on reference evapotranspiration estimates at watershed scale. Hydrol Earth Syst Sc 14:2479–2494. doi:10.5194/hess-14-2479-2010

    Article  Google Scholar 

  • Alves LF (1994) Competição intraespecífica e padrão espacial em uma população de Euterpe edulis Mart. (Arecaceae). Dissertion, University of Campinas

  • De Andrade ACS (2001) The effect of moisture content and temperature on the longevity of heart of palm seeds (Euterpe edulis M.). Seed Sci Technol 29:171–182

    Google Scholar 

  • Bernardo CSS, Lloyd H, Olmos F, Cancian LF, Galetti M (2011) Using post-release monitoring data to optimize avian reintroduction programs: a 2-year case study from the Brazilian Atlantic Rainforest. Anim Conserv 14:676–686. doi:10.1111/j.1469-1795.2011.00473.x

    Article  Google Scholar 

  • Bertolo LS, Agar PM, Pablo CL, Santos RF (2012) Boundaries and mosaics: an approach to evaluate changes and to profit landscape planning, São Sebastião Island, SP/Brazil. Bosque (Valdivia) 33:303–308. doi:10.4067/S0717-92002012000300013

    Article  Google Scholar 

  • Boscolo D, Metzger JP (2011) Isolation determines patterns of species presence in highly fragmented landscapes. Ecography 34:1018–1029. doi:10.1111/j.1600-0587.2011.06763.x

    Article  Google Scholar 

  • Brancalion PHS, Novembre ADLC, Rodrigues RR (2011) Seed development, yield and quality of two palm species growing in different tropical forest types in SE Brazil: implications for ecological restoration. Seed Sci Technol 39:412–424. doi:10.15258/sst.2011.39.2.13

    Article  Google Scholar 

  • Brancalion PHS, Viani RAG, Aronson J, Rodrigues RR, Nave AG (2012) Improving planting stocks for the Brazilian Atlantic forest restoration through community-based seed harvesting strategies. Restor Ecol 20:704–711. doi:10.1111/j.1526-100X.2011.00839.x

    Article  Google Scholar 

  • Brasil (2014). Lista Nacional Oficial das Espécies da Flora Ameaçadas de Extinção. http://pesquisa.in.gov.br/imprensa/jsp/visualiza/index.jsp?data=18/12/2014&jornal=1&pagina=110&totalArquivos=144. Accessed 22 December 2015

  • Burnett C, Blaschke T (2003) A multi-scale segmentation/object relationship modelling methodology for landscape analyses. Ecol Model 168:233–249. http://dx.doi.org/10.1016/S0304-3800(03)00139-X

    Article  Google Scholar 

  • Bélisle M (2005) Measuring landscape connectivity: the challenge of behavioral landscape ecology. Ecology 86:1988–1995. doi:10.1890/04-0923

    Article  Google Scholar 

  • Carvalho PER (1994) Espécies florestais brasileiras: recomendações silviculturais, potencialidades e uso da madeira. EMBRAPA-CNPF, Brasília

  • CBD—Convention on Biological Diversity (2012) Resourcing the Aichi Biodiversity Targets: a first assessment of the resources required for implementing the strategic plan for biodiversity 2011—2020. https://www.cbd.int/doc/meetings/fin/hlpgar-sp-01/official/hlpgar-sp-01-01-report-en.pdf. Accessed 22 December 2015

  • Conte R, Reis MS, Reis A, Mantovani A, Mariot A, Fantini AC, Nodari RO (2000) Dinâmica da regeneração natural de Euterpe edulis. Sellowia 49/52:106–130

    Google Scholar 

  • Conti R (2004) Genetic structure of Euterpe edulis Mart. populations submitted to human exploitation using allozymic and microsatellite markers. University of São Paulo. (Ph.D. thesis)

  • Echeverria C, Gatica P, Fuentes R (2013) Habitat edge contrast as an indicator to prioritize sites for ecological restoration at the landscape scale. Nat Conservação 11:170–175. doi:10.4322/natcon.2013.026

    Article  Google Scholar 

  • Fadini RF, Fleury M, Donatti CI, Galetti M (2009) Effects of frugivore impoverishment and seed predators on the recruitment of a keystone palm. Acta Oecol 35:188–196. doi:10.1016/j.actao.2008.10.001

    Article  Google Scholar 

  • Fantini AC, Guries RP (2007) Forest structure and productivity of palmiteiro (Euterpe edulis Martius) in Brazilian Mata Atlântica. Forest Ecol Manag 242:185–194. doi:10.1016/j.foreco.2007.01.005

    Article  Google Scholar 

  • Fantini AC, Reis MS, Portilho WG (1993) Demografia de Euterpe edulis no Vale do Rio Ribeira de Iguape-SP. SBS/SBEF, Curitiba. Anais. São Paulo, In: 7 Congresso Florestal Brasileiro

    Google Scholar 

  • Galanes IT, Thomlinson JR (2009) Relationships between spatial configuration of tropical forest patches and wood plant diversity in northeastern Puerto Rico. Plant Ecol 201:101–113. doi:10.1007/978-90-481-2795-5_9

    Article  Google Scholar 

  • Galetti M, Aleixo A (1998) Effects of palm heart harvesting on avian frugivores in the Atlantic rain forest of Brazil. J Appl Ecol 35:286–293. doi:10.1046/j.1365-2664.1998.00294.x

    Article  Google Scholar 

  • Gascon C, Lovejoy TE, Bierregaard Jr RO, Malcolm JR, Stouffer PC, Vasconcelos HL, Laurance WF, Zimmerman B, Tocher M, Borges S (1999) Matrix habitat and species richness in tropical forest remnants. Biol Conserv 91:223–229. doi:10.1016/S0006-3207(99)00080-4

    Article  Google Scholar 

  • Gomes PB (2003) Germinação de duas espécies de palmeiras (Geonoma brevispatha e Euterpe edulis) de uma Floresta Paludícola no Sudeste do Brasil. Dissertion, University of Campinas.

  • Hardt E, Santos RF, Pablo CL, Agar PM, Pereira-Silva EFL (2013) Utility of landscape mosaics and boundaries in forest conservation decision making in the Atlantic forest of Brazil. Lands Ecol 28:385–399. doi:10.1007/s10980-013-9845-5

    Article  Google Scholar 

  • Jesus FM, Pivello VR, Meirelles ST, Franco GADC, Metzger JP (2012) The importance of landscape structure for seed dispersal in rain forest fragments. J Veg Sci 23:1126–1136. doi:10.1111/j.1654-1103.2012.01418.x

    Article  Google Scholar 

  • Kojima JM (2004) Estrutura populacional da palmeira Euterpe edulis Martius (Arecaceae) em uma área de Floresta Atlântica do Parque Estadual da Ilha do Cardoso, Estado de São Paulo. Dissertion, São Paulo State University “Júlio de Mesquita Filho”.

  • Kurtz BC, Gomes JC, Scarano FR (2013) Structure and phytogeographic relationships of swamp forests of Southeast Brazil. Acta Bot Bras 27:647–660. doi:10.1590/S0102-33062013000400002

    Article  Google Scholar 

  • Laps RE (1996) Frugivoria e dispersão de sementes de palmiteiro (Euterpe edulis, Arecaceae) na Mata Atlântica sul do Estado de São Paulo. Dissertion, University of Campinas

  • Laurance WF et al. (2012) Averting biodiversity collapse in tropical forest protected areas. Nature 489:290–294. doi:10.1038/nature11318

    Article  CAS  Google Scholar 

  • Lorenzi H et al. (2004) Palmeiras brasileiras e exóticas cultivadas. Instituto Plantarum, Nova Odessa

    Google Scholar 

  • Martins CC, Bovi MLA, Nakagawa J, Machado CG (2009) Drying and storage of Euterpe edulis seeds. Revista Árvore 33:635–642. doi:10.1590/S0100-67622009000400006

    Article  Google Scholar 

  • Martins CC, Nakagawa J, Bovi MLA (1999) Desiccation tolerance of four seedlots from Euterpe edulis Mart. Seed Sci Technol 28:1–13

    Google Scholar 

  • McGarigal K, Cushman AS, Neel MC, Ene E (2002) FRAGSTATS v3: spatial pattern analysis program for categorical maps. University of Massachusetts, Amherst

    Google Scholar 

  • Melo FPL, Arroyo-Rodrıguez V, Fahrig L, Martınez-Ramos M, Tabarelli M (2013) On the hope for biodiversity-friendly tropical landscapes. Trends Ecol Evol 28:461–468. doi:10.1016/j.tree.2013.01.001

    Article  Google Scholar 

  • Metzger JP, Muller E (1996) Characterizing the complexity of landscape boundaries by remote sensing. Lands Ecol 11:65–77. doi:10.1007/BF02093740

    Article  Google Scholar 

  • Mortara MO (2000) Palm tree (Euterpe edulis Martius) potencial distribution modeling in a mountainous region based on topographic variables. Dissertion, Instituto nacional de pesquisas espaciais—INPE

  • Mortara MO, Valeriano DM (2001) Modelagem da distribuição potencial do palmiteiro (Euterpe edulis Martius) a partir de variáveis topográficas. Anais. SBSR, Foz do Iguaçu, INPE 10:459–471

    Google Scholar 

  • Muler AE, Rother DC, Brancalion PHS, Naves RP, Rodrigues RR, Pizo MA (2014) Can overharvesting of a non-timber-forest-product change the regeneration dynamics of a tropical rainforest? The case study of Euterpe edulis. Forest Ecol Manag 324:117–125. doi:10.1016/j.foreco.2013.09.001

    Article  Google Scholar 

  • Nakazono EM, Costa MC, Futatsugi K, Paulilo MTS (2001) Early growth of Euterpe edulis Mart. in different light environments. Braz J Bot 24:173–179. doi:10.1590/S0100-84042001000200007

    Article  Google Scholar 

  • Narezi G, Marques EM (2012) Agroecologia como ferramenta de conservação da sociobiodiversidade em Reservas de Desenvolvimento Sustentável no Estado de São Paulo. 6 Encontro Nacional da Anppas, Belém, Brasil, In

    Google Scholar 

  • Nettesheim FC, Conto T, Pereira MG, Machado DL (2015) Contribution of topography and incident solar radiation to variation of soil and plant litter at an area with heterogeneous terrain. Rev Bras Ciênc Solo 39:750–762. doi:10.1590/01000683rbcs20140459

    Article  CAS  Google Scholar 

  • Nodari RO, Fantini AC, Reis A, Reis MS (2000) Restauração de populações de Euterpe edulis Martius (Arecaceae) na mata atlântica. Sellowia 49/52:189–201

    Google Scholar 

  • Nogueira Junior LR, Fisch ST, Ballestero SD (2003) Influência da umidade do solo no desenvolvimento inicial de plantas do palmiteiro Euterpe edulis Mart. em floresta nativa. Revista Biociências 9:7–13

    Google Scholar 

  • Oliveira KF et al. (2014) Structure and spatial distribution of palm populations at different altitudes in Serra do Mar, Ubatuba, São Paulo, Brazil. Rodriguésia 65:1043–1055

    Article  Google Scholar 

  • Payés ACL, Pavão T, Santos RF, (2013) The conservation success over time: Evaluating the land use and cover change in a protected area under a long re-categorization process. Land Use Policy 30 (1):177–185

    Article  Google Scholar 

  • Pizo MA, Simão I (2001) Seed deposition patterns and the survival of seeds and seedlings of the palm Euterpe edulis. Acta Oecol 22:229–233. doi:10.1016/S1146-609X(01)01108-0

    Article  Google Scholar 

  • Power ME, Mills LS (1995) The keystone cops meet in Hilo. Trends Ecol Evol 10:182–184. doi:10.1016/S0169-5347(00)89047-3

    Article  CAS  Google Scholar 

  • Primack RB, Rodrigues E (2001) Biologia da conservação. Planta, Londrina

    Google Scholar 

  • Reis A (2002) Restauração e manejo do palmito na Mata Atlântica. In: Schaffer WB, Prochnow M (eds) A mata Atlântica e você. Apremavi, Brasilia, pp 59–62

    Google Scholar 

  • Reis A, Kageyama PY, Reis MS, Fantini AC (1996) Demografia de Euterpe edulis Martius (Arecaceae) em uma Floresta Ombrófila Densa Montana, em Blumenal (SC). Sellowia 47:3–33

    Google Scholar 

  • Reis A, Kageyama PY (2000) Dispersão de sementes de palmiteiro (Euterpe edulis Martius—Palmae). In: Reis MS, Reis A (eds) Euterpe edulis Martius—(Palmiteiro) Biologia, Conservação e Manejo. Herbário Barbosa Rodrigues, Itajaí, pp 60–92

    Google Scholar 

  • Reis MS, Conte R, Nodari RO, Fantini AC, Reis A, Mantovani A, Mariot A (2000a) Manejo sustentável e produtividade do Palmiteiro (Euterpe edulis Martius—Arecaceae). Sellowia 49/52:202–224

    Google Scholar 

  • Reis MS, Fantini AC, Nodari RO, Reis A, Guerra MP, Mantovani A (2000b) Management and conservation of natural populations in Atlantic rain forest: the case study of palm heart (Euterpe edulis Martius). Biotropica 32:894–902. doi:10.1111/j.1744-7429.2000.tb00627.x

    Article  Google Scholar 

  • Rempel R (2006) Patch Analyst version 3.0. Ontario Ministry of Natural Resources. Centre for Northern Forest Ecosystem Research, Thunder Bay, Ontario

    Google Scholar 

  • Roberto GG, Habermann G (2010) Morphological and physiological responses of the recalcitrant Euterpe edulis seeds to light, temperature and gibberellins. Seed Sci Technol 38:367–378

    Article  Google Scholar 

  • Roldán-Martín MJ, Pablo CL, Agar PM (2006) Landscapes changes over time: comparison of land uses, boundaries and mosaics. Landsc Ecol 21:1075–1088. doi:10.1007/s10980-006-7245-9

    Article  Google Scholar 

  • Saaty TL (1990) Physics as a decision theory. Eur J Oper Res 48:98–104. doi:10.1016/0377-2217(90)90066-K

    Article  Google Scholar 

  • Sanderson EW, Redford KH, Vedder A, Coppolillo PB, Ward SE (2002) A conceptual model for conservation planning based on landscape species requirements. Landsc Urban Plan 58:41–56. doi:10.1016/S0169-2046(01)00231-6

    Article  Google Scholar 

  • Seoane CES (2005) Efeitos da fragmentação florestal sobre o sistema de reprodução e a imigração de sementes de remanescentes populacionais de Euterpe edulis Martius. University of Campinas. (Ph.D. thesis)

  • Silva DM (1991) Estrutura de tamanho e padrão espacial de uma população de Euterpe edulis Mart. (Arecaceae) em Mata Mesófila Semidecídua no Município de Campinas, SP. University of Campinas. (Ph.D. thesis)

  • Terra TN, Santos RF, Costa DC, (2014) Land use changes in protected areas and their future: The legal effectiveness of landscape protection. Land Use Policy 38:378–387

    Article  Google Scholar 

  • Tsukamoto Filho AA, Macedo RLG, Venturin N, Morais AR (2001) Aspectos fisiológicos e silviculturais do palmiteiro (Euterpe edulis Martius) plantado em diferentes tipos de consórcios no município de lavras, Minas Gerais. Cerne 7:41–53

    Google Scholar 

  • Turner MG (2005) Landscape ecology: what is the state of the science? Annu Ver Ecol Evol Syst 36:319–344. doi:10.1146/annurev.ecolsys.36.102003.152614

    Article  Google Scholar 

  • Turner MG, Gardner RH, O’Neill RV (2001) Landscape ecology in theory and practice: pattern and process. Springer, New York

    Google Scholar 

  • Uezu A, Metzger JP, Vielliard JME (2005) Effects of structural and functional connectivity and patch size on the abundance of seven Atlantic Forest bird species. Biol Conserv 123:507–519. doi:10.1016/j.biocon.2005.01.001

    Article  Google Scholar 

  • Valiente-Banuet A et al. (2015) Beyond species loss: the extinction of ecological interactions in a changing world. Funct Ecol 29:299–307. doi:10.1111/1365-2435.12356

    Article  Google Scholar 

  • Wen B (2009) Storage of recalcitrant seeds: a case study of the Chinese fan palm, Livistona chinensis. Seed Sci Technol 37:167–179

    Article  Google Scholar 

  • Wiens J, Moss MR (2005) Issues and perspectives in landscape ecology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Wright SJ (2010) The future of tropical forests. Ann N.Y. Acad Sci 1195:1–27. doi:10.1111/j.1749-6632.2010.05455.x

    Article  Google Scholar 

  • Wu J, Hobbs RJ (2007) Key topics in landscape ecology. Cambridge University Press, Cambridge

    Book  Google Scholar 

Download references

Acknowledgements

The authors thank to Fundação Carolina—Santander, FF (Fundação Florestal) and COTEC (Comissão Técnico-Científica do Instituto Florestal) for financial sponsoring and supporting the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Ravanini Gardon.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lins, D.B., Gardon, F.R., Meyer, J.F. et al. Keystone Species, Forest and Landscape: A Model to Select Protected Areas. Environmental Management 59, 1017–1033 (2017). https://doi.org/10.1007/s00267-017-0832-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00267-017-0832-5

Keywords

Navigation