Skip to main content

Advertisement

Log in

Land Management Versus Natural Factors in Land Instability: Some Examples in Northern Spain

  • Published:
Environmental Management Aims and scope Submit manuscript

Abstract

The objective of this work is to test a hypothesis formulated on the basis of former results which considers that there might be a “global geomorphic change,” due to activities related to land management and not determined by climate change, which could be causing an acceleration of geomorphic processes. Possible relationships between some geomorphic processes related to land instability (landslides or sediment generation) and potential triggering factors are analyzed in study areas in northern Spain. The analysis is based on landslide inventories covering different periods, as well as the determination of sedimentation rates. Temporal landslide and sedimentation rate trends are compared with different indicators of human activities (land-use change, logging, forest fires) and with potential natural triggers (rainfall, seismicity). The possible influence of the road network in the distribution of landslides is also analyzed. Results obtained show that there is a general increase of both landslide and sedimentation rates with time that cannot be explained satisfactorily by observed rainfall trends and even less by seismicity. Land-use change appears to be by far the main factor leading to land instability, with some changes producing up to a 12-fold increase of landslide rate. A relationship between road network and the spatial distribution of landslides has also been observed. These results do confirm the existence of an acceleration of geomorphic processes in the region, and also suggest that climate-related factors play a limited role in the changes observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Acharya G, Cochrane TA, Davies T, Bowman E (2009) The influence of shallow landslides on sediment supply: a flume-based investigation using sandy soil. Eng Geol 109(3–4):161–169

    Article  Google Scholar 

  • AEMET (2010) Agencia Española de Meteorología. http://www.aemet.es. Accessed 5 Nov 2010

  • Bakker MM, Govers G, van Doorn A, Quetier F, Chouvardas D, Rounsevell M (2008) The response of soil erosion and sediment export to land-use change in four areas of Europe: the importance of landscape pattern. Geomorphology 98:213–226

    Article  Google Scholar 

  • Beguería S (2006) Changes in land cover and shallow landslide activity: a case study in the Spanish Pyrenees. Geomorphology 74:196–206

    Article  Google Scholar 

  • Bommer JJ, Rodríguez CE (2002) Earthquake-induced landslides in Central America. Eng Geol 63(3–4):189–220

    Article  Google Scholar 

  • Bonachea J (2006) Desarrollo, aplicación y validación de procedimientos y modelos para la evaluación de amenazas, vulnerabilidad y riesgo debidos a procesos geomorfológicos. Dissertation, Universidad de Cantabria, Spain

  • Bonachea J, Bruschi VM, Cendrero A, Remondo J, Rivas V, Salas L, Mendez G, Dantas M, Pejón O, Zuquette L, Etcheverry R, Forte L, Hurtado M (2008) ¿Cambio geomorfológico global? Implicaciones para la evaluación y predicción del riesgo de deslizamientos (CAMGEO). In: Benavente J, Gracia FJ (eds) Trabajos de Geomorfología en España 2006–2008. SEG, Cádiz, pp 401–404

    Google Scholar 

  • Bonachea J, Remondo J, de Terán JRD, González-Díez A, Cendrero A (2009) Landslide risk models for decision making. Risk Anal 29:1629–1643

    Article  Google Scholar 

  • Bonachea J, Bruschi VM, Hurtado MA, Forte LM, da Silva M, Etcheverry R, Cavallotto JL, Dantas-Ferreira M, Pejon OJ, Zuquette LV, de O Bezerra MA, Remondo J, Rivas V, Gómez-Arozamena J, Fernández G, Cendrero A (2010) Natural and human forcing in recent geomorphic change; case studies in the Río de la Plata basin. Sci Total Environ 408(13):2674–2695

    Article  CAS  Google Scholar 

  • Borga M, Tonelli F, Fontana G, Cazorzi F (2005) Evaluating the influence of forest roads on shallow landsliding. Ecol Model 187:85–98

    Article  Google Scholar 

  • Brierly GJ, Stankoviansky M (2003) Special issue geomorphic responses to land-use changes. Catena 51(3–4):173–347

    Article  Google Scholar 

  • Brown H (1956) Technological denudation. In: Thomas WL (ed) Man’s role in changing the face of the earth. University of Chicago Press, Chicago, pp 1023–1032

    Google Scholar 

  • Bruschi VM, Bonachea J, Remondo J, Rivas V, Gómez Arozamena J, Salas L, Fernández G, Soto J, Cendrero A, Méndez G, Naredo JM, Hurtado M, Forte LM, da Silva M, Etcheverry R, Cavalloto JL, Dantas-Ferreira M, Pejon OJ, Zuquette LV (2008) ¿Existe un cambio geomorfológico acoplado a la actividad económica? In: Cendrero A, Gómez Arozamena J, Fernández Navarro PL, Quindós LS, Ródenas C, Saiz Fernández C (eds) Contribuciones científicas en memoria del Profesor Jesús Soto Torres. PubliCan, Santander, pp 31–54

    Google Scholar 

  • Bruschi VM, Bonachea J, Remondo J, Gómez-Arozamena J, Rivas V, Mendez G, Naredo JM, Cendrero A (2012) Analysis of geomorphic systems’ response to natural and human drivers in northern Spain: implications for global geomorphic change. Geomorphology. doi:10.1016/j.geomorph.2012.03.017

  • Canuti P, Focardi P, Garzonio CA (1985) Correlation between rainfall and landslides. Bull Int Assoc Eng Geol 32:49–54

    Article  Google Scholar 

  • Carracedo V, Diego C, García Codron JC, Rasilla A (2007) Incidencia y características de los incendios forestales en los bosques de Cantabria. IV Conferencia Internacional sobre Incendios Forestales. Actas. Organismo Autónomo de Parques Nacionales, Ministerio de Medio Ambiente, Madrid, CD Rom. ISBN 978-84-8014-690-6

  • Carracedo V, Diego C, García Codron JC, Rasilla D (2008) La incidencia de los incendios forestales sobre la cubierta vegetal de los montes en Cantabria: “superficie recorrida” vs “pérdidas en superficie”. In: Redondo García MM, Palacios Estremera MT, López Lozano FJ, Santamaría Polo T, Sánchez Mata D (eds) Avances en Biogeografía. Departamento Análisis Geográfico Regional y Geografía Física, Universidad Complutense de Madrid, Madrid, pp 293–300. ISBN 13-978-84-691-2538-0

  • Cearreta A, Alday M, Irabien MJ, Etxebarría N, Gómez J (2008) Modern conditions and recent environmental development in the Muskiz estuary; historical disturbance by the largest oil refinery in Spain. J Iber Geol 34(2):191–203

    Google Scholar 

  • Cendrero A (2003) De la comprensión de la historia de la tierra al análisis y predicción de las interacciones entre seres humanos y medio natural. Real Academia de Ciencias Exactas, Físicas y Naturales, Madrid

  • Cendrero A, Douglas I (1996) Earth surface processes, materials use and urban development; project aims and methodological approach. Abstracts with programs, GSA Annual Meeting, Denver

  • Cendrero A, Rivas V, Remondo J (2005) Influencia humana sobre los procesos geológicos superficiales; consecuencias ambientales. In: Naredo JM (ed) Incidencia de la especie humana sobre la Tierra (1955–2005). Universidad de Granada-Fundación César Manrique, Granada, pp 261–306

  • Cendrero A, Remondo J, Bonachea J, Rivas V, Soto J (2006) Sensitivity of landscape evolution and geomorphic processes to direct and indirect human influence. Geogr Fis Geodin Quat 29(2):125–137

    Google Scholar 

  • Cendrero A, Remondo J, Bonachea J, Rivas V, Soto J (2007) Global change, global geomorphic change and natural hazards; a new scenario? In: Dinâmicas Geomorfológicas, Metodologias, Aplicaçao. Associaçao Portuguesa de Geomorfólogos, Lisboa, pp 19–38

  • Cendrero A, Forte LM, Hurtado MA, Bonachea J, Remondo J, Rivas V, Dantas M, de O Bezerra MA, Naredo JM, Méndez G (2009) Cambio global y usos del suelo ¿qué está ocurriendo con la epidermis de la tierra? An Acad Naci Cienc Argentina 32:63–96

    Google Scholar 

  • Chang JC, Slaymaker O (2002) Frequency and spatial distribution of landslides in a mountainous drainage basin: Western Foothills, Taiwan. Catena 46:285–307

    Article  Google Scholar 

  • Chatwin S (2005) Managing landslide risk from forest practices in British Columbia. British Columbia Forest Practices Board Special Investigation Victoria, BC. FPB/SIR/14

  • Clarke ML, Rendell HM (2000) The impact of the farming practice of remodelling hillslope topography on badland morphology and soil erosion processes. Catena 40:229–250

    Article  Google Scholar 

  • Clarke ML, Rendell HM (2006) Hincasting extreme events: the occurrence and expression of damaging floods and landslides in southern Italy. Land Degrad Dev 17:365–380

    Article  Google Scholar 

  • Corominas J, Moya J (1999) Reconstructing recent landslide activity in relation to rainfall in the Llobregat River basin, Eastern Pyrenees, Spain. Geomorphology 30:79–93

    Article  Google Scholar 

  • Costa JE (1975) Effects of agriculture on erosion and sedimentation in the Piedemont Province, Maryland. Geol Soc Am Bull 86:1281–1286

    Article  Google Scholar 

  • Crosta GB, Frattini P (2003) Distributed modelling of shallow landslides triggered by intense rainfall. Nat Hazards Earth Syst Sci 3(1–2):81–93

    Article  Google Scholar 

  • Crozier MJ (1986) Landslides: causes, consequences and environment. Croom Helm, Routledge

    Google Scholar 

  • Crozier MJ (2005) Multiple-occurrence regional landslide events in New Zealand: hazard management issues. Landslides 2:247–256

    Article  Google Scholar 

  • Crozier MJ (2010) Deciphering the effect of climate change on landslide activity: a review. Geomorphology 124(3–4):260–267

    Article  Google Scholar 

  • Crutzen PJ (2002) Geology of mankind. Nature 415:23

    Article  CAS  Google Scholar 

  • Dai FC, Lee CF (2002) Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology 42:213–228

    Article  Google Scholar 

  • Diputación Foral de Guipúzcoa (1986) Estudio Geomorfológico de Guipúzcoa 1:25000. Hojas de Ondárroa, Eibar, Zumaya y Azcoitia. Compañía General de Sondeos, SA Memorias, Mapas y Anexos. Unpublished report

  • Douglas I (1990) Sediment transfer and siltation. In: Turner BL, Clark WC, Kates RW, Richards JF, Mathews JT, Meyer WB (eds) The earth as transformed by human action. Cambridge University Press, Cambridge, pp 215–234

    Google Scholar 

  • Galve JP, Gutierrez F, Lucha P, Bonachea J, Remondo J, Cendrero A, Gutiérrez M, Gimeno MJ, Pardo G, Sánchez JA (2009) Sinkholes in the salt-bearing evaporite karst of the Ebro River valley upstream of Zaragoza city (NE Spain) Geomorphological mapping and analysis as a basis for risk management. Geomorphology 108:145–158

    Article  Google Scholar 

  • García-Rodríguez MJ, Malpica-Velasco JA, Oterino B, Diaz M (2008) Susceptibility assessment of earthquake-triggered landslides in El Salvador using logistic regression. Geomorphology 95(3):172–191

    Article  Google Scholar 

  • García-Ruiz JM, Beguería S, Alatorre LC, Puigdefábregas J (2010) Land cover changes and shallow landsliding in the flysch sector of the Spanish Pyrenees. Geomorphology 124(3–4):250–259

    Article  Google Scholar 

  • Glade T (1998) Establishing the frequency and magnitude of landslide-triggering rainstorm events in New Zealand. Environ Geol 35(2–3):160–174

    Article  Google Scholar 

  • Glade T (2003) Landslide occurrence as a response to land use change: a review of evidence from New Zealand. Catena 51(1):97–314

    Google Scholar 

  • González-Díez A, Salas L, Díaz de Terán JR, Cendrero A (1996) Late quaternary climate changes and land mass movement frequency and magnitude in the Cantabrian Region, Spain. Geomorphology 15(3–4):291–309

    Article  Google Scholar 

  • González-Díez A, Remondo J, Díaz de Terán JR, Cendrero A (1999) A methodological approach for the analysis of the temporal occurrence and triggering factors of landslides. Geomorphology 30:95–113

    Article  Google Scholar 

  • Goudie A (1995) The changing earth rates of geomorphological processes. Blackwell, Oxford

    Google Scholar 

  • Guthrie RH (2002) The effects of logging on frequency and distribution of landslides in three watersheds on Vancouver Island, British Columbia. Geomorphology 43:273–292

    Article  Google Scholar 

  • Guthrie RH (2005) Geomorphology of Vancouver Island: mass wasting potential. Research report

  • Guthrie RH, Evans SG (2004) Analysis of landslide frequencies and characteristics in a natural system, coastal British Columbia. Earth Surf Proc Land 29:1321–1339

    Article  Google Scholar 

  • Gutiérrez F, Galve JP, Guerrero J, Lucha P, Cendrero A, Remondo J, Bonachea J, Gutiérrez M, Sánchez JA (2007) The origin, typology, spatial distribution, and detrimental effects of the sinkholes developed in the alluvial evaporite karst of the Ebro River valley downstream Zaragoza city (NE Spain). Earth Surf Proc Land 32:912–928

    Article  Google Scholar 

  • Haigh MJ, Rawat JS, Rawat MS, Bartarya SK, Rai SP (1995) Interactions between forest and landslide activity along new highways in the Kumaun Himalaya. For Ecol Manage 78(1–3):173–189

    Article  Google Scholar 

  • Hooke RL (1994) On the efficacy of humans as geomorphic agents. GSA Today 4(9):224–225

    Google Scholar 

  • Howes DE, Sondheim M (1988) Quantitative definitions of stability classes as related to post-logging clearcut landslide occurrence. In: Part II, Proceedings of the 10th B.C. Soil Science Workshop. B.C. Ministry of Forestry, Land Management Report 56, pp 167–184

  • ICANE (2010) Series Estadísticas Municipales. Instituto Cántabro de Estadística. http://www.icane.es. Accessed 10 Nov 2010

  • IGME (1999) Mapa geológico de Cantabria a escala 1:100,000 Instituto Geológico y Minero de España, Madrid

  • IGN (2010) Servicio de Información Sísmica del Instituto Geográfico Nacional. http://www.ign.es. Accessed 5 Nov 2010

  • Jakob M (2000) The impacts of logging on landslide activity at Clayoquot Sound, British Columbia. Catena 38:279–300

    Article  Google Scholar 

  • Jensen F, Cole G (1965) South Fork Salmon River storm and flood report. Department of Agriculture US, Forest Service, Payette National Forest. Unpublished report

  • Judson S (1983) Erosion of the land, what’s happening to our continents? In: Tank RW (ed) Environmental geology. Oxford University Press, New York, pp 184–197

    Google Scholar 

  • Keefer DK (1984) Landslides caused by earthquakes. Geol Soc Am Bull 95:406–421

    Article  Google Scholar 

  • Keefer DK, Wasowski J, Del Gaudio V (eds) (2006) Landslides induced by earthquake and volcanic activity. Eng Geol 86(2–3):85–210

    Google Scholar 

  • Korup O, Clague JJ, Hermanns RL, Hewitt K, Strom AL, Weidinger JT (2007) Giant landslides, topography, and erosion. Earth Planet Sci Lett 261:578–589

    Article  CAS  Google Scholar 

  • Marsh GP (1877) The earth as modified by human action a (new edition of man and nature). Scribner, Armstrong & Co, New York

    Google Scholar 

  • Meusburger K, Alewell C (2008) Impacts of anthropogenic and environmental factors on the occurrence of shallow landslides in an alpine catchment (Urseren Valley, Switzerland). Nat Hazards Earth Syst Sci 8:509–520

    Article  Google Scholar 

  • Owen LA, Kamp U, Khattak GA, Harp EL, Keefer DK, Bauer MA (2008) Landslides triggered by the 8 October 2005 Kashmir earthquake. Geomorphology 94(1–2):1–9

    Article  Google Scholar 

  • Papadopoulos GA, Plessa A (2000) Magnitude-distance relations for earthquake-induced landslides in Greece. Eng Geol 58(3–4):377–386

    Article  Google Scholar 

  • Peart MR, Ng KY, Zhang DD (2005) Landslides and sediment delivery to a drainage system: some observations from Hong Kong. J Asian Earth Sci 25(5):821–836

    Article  Google Scholar 

  • Petley DN, Hearn GJ, Hart A, Rosser NJ, Dunning SA, Oven K, Mitchell WA (2007) Trends in landslide occurrence in Nepal. Nat Hazards 43:23–44

    Article  Google Scholar 

  • Piccarreta M, Capolongo D, Boenzi F, Bentivenga M (2006) Implications of decadal changes in precipitation and land use policy to soil erosion in Basilicata, Italy. Catena 65:138–151

    Article  Google Scholar 

  • Remondo J (2001) Elaboración y validación de mapas de susceptibilidad de deslizamientos mediante técnicas de análisis espacial. Dissertation, Universidad de Cantabria, Spain

  • Remondo J, González-Díez A, Díaz de Terán JR, Cendrero A, Fabbri A, Chung CF (2003) Validation of landslide susceptibility maps; examples and applications from a case study in northern Spain. Nat Hazards 30:437–449

    Article  Google Scholar 

  • Remondo J, González-Díez A, Soto J, Díaz de Terán JR, Cendrero A (2005) Human impact on geomorphic processes and hazards in mountain areas. Geomorphology 66:69–84

    Article  Google Scholar 

  • Remondo J, Bonachea J, Cendrero A (2008) Quantitative landslide risk assessment and mapping on the basis of recent occurrences. Geomorphology 94:495–507

    Article  Google Scholar 

  • Rice RM (1977) Forest management to minimize landslide risk. In: Guidelines for Watershed Management, FAO Conservation Guide, Rome, pp 271–287

  • Rivas V, Cendrero A, Hurtado M, Cabral M, Giménez J, Forte L, del Río L, Cantú M, Becker A (2006) Geomorphic consequences of urban development and mining activities; an analysis of study areas in Spain and Argentina. Geomorphology 73(3–4):185–206

    Article  Google Scholar 

  • Rollerson TP (1992) Relationships between landscape attributes and landslide frequencies after logging: Skidegate Plateau, Queen Charlotte Islands. B.C. Ministry of Forestry, Victoria, BC. Land Management Report 76

  • Rollerson TP, Jones C, Trainor K, Thomson B (1998) Linking post-logging landslides to terrain variables: coast Mountains, British Columbia-preliminary analyses. In: Proceedings of the 8th International Congress. International Association for Engineering Geology and Environment. Balkema, Rotterdam, The Netherlands, pp 1973–1979

  • Rothacher J, Glazebrook TB (1968) Flood damage in the National Forests of Region 6. USDA Forest Service, Pacific Northwest Forest and Range Experiment Station. Portland, OR

  • Sidle RC, Ziegler AD, Negishi JN, Nik AR, Siew R, Turkelboom F (2006) Erosion processes in steep terrain—truths, myths, and uncertainties related to forest management in Southeast Asia. For Ecol Manage 224(1–2):199–225

    Article  Google Scholar 

  • Slaymaker O (ed) (2000) Geomorphology, human activity and global environmental change. Wiley, Chichester

    Google Scholar 

  • Slaymaker O, Spencer T, Embleton-Hamann C (eds) (2009) Geomorphology and global environmental change. Cambridge University Press, Cambridge

    Google Scholar 

  • Soto J, Gómez J, Viguri J, Cendrero A, Irabien MJ, Yusta I, Gelen A, Díaz O (2006) Increase of sedimentation rates in an estuarine system. Contribution Educat Environ Prot 7:35–40

    Google Scholar 

  • Syvitski JPM, Vörösmarty CJ, Kettner AJ, Green P (2005) Impacts of humans on the flux of terrestrial sediment to the global coastal ocean. Science 308:376–380

    Article  CAS  Google Scholar 

  • Szabó J (2003) The relationship between landslide activity and weather: examples from Hungary. Nat Hazards Earth Syst Sci 3(1–2):43–52

    Article  Google Scholar 

  • Tarantino C, Blonda P, Pasquariello G (2007) Remote sensed data for automatic detection of land-use changes due to human activity in support to landslide studies. Nat Hazards 41(1):245–267

    Article  Google Scholar 

  • Ter-Stepanian G (1988) Beginning of the technogene. Bull Int Assoc Eng Geol 38:133–142

    Article  Google Scholar 

  • Turner BL, Clark WC, Kates RW, Richards JF, Mathews JT, Meyer WB (eds) (1990) The earth as transformed by human action. Cambridge University Press, Cambridge

    Google Scholar 

  • Van Beek LPH, van Asch THWJ (2004) Regional assessment of the effects of land-use change on landslide hazard by means of physically based modelling. Nat Hazards 31:289–304

    Article  Google Scholar 

  • Vanacker V, Govers G, Barros S, Poesen J, Deckers J (2003) The effect of short-term socio-economic and demographic change on landuse dynamics and its corresponding geomorphic response with relation to water erosion in a tropical mountainous catchment, Ecuador. Landsc Ecol 18:1–15

    Article  Google Scholar 

  • Wang FW, Sassa K (2003) A general mechanism of long-runout landslides induced by earthquake and rainfall in crushable soils. In: Proceedings of international conference on fast slope movements: prediction and prevention for risk mitigation, Naples, Italy, pp 531–536

  • Wasowski J (1998) Understanding rainfall-landslide relationships in man-modified environments: a case-history from Caramanico Terme, Italy. Environ Geol 35(2–3):197–209

    Article  Google Scholar 

  • Wasowski J, Casarano D, Lamanna C (2007) Is the current landslide activity in the Daunia region (Italy) controlled by climate or land-use change? In: McInnes R, Jakeways J, Fairbank H, Mathie E (eds) Landslide and climate change. Taylor & Francis Group, London

  • WCED (World Commission on Environment and Development) (1987) Our common future. Oxford University Press, Oxford

    Google Scholar 

  • Wieczorek GF (1996) Landslide triggering mechanisms. In: Schuster RL, Turner AK (eds) Landslides: investigation and mitigation. Transportation Research Board, National Research Council, Special Report, Washington, DC, pp 76–90

    Google Scholar 

  • Wieczorek GF, Glade T (2005) Climatic factors influencing occurrence of debris flows. In: Jakob M, Hungr O (eds) Debris flow hazards and related phenomena. Springer, Berlin, pp 325–362

    Chapter  Google Scholar 

  • Wolman MG, Schick AP (1967) Effects of construction on fluvial sediment, urban and suburban areas of Maryland. Water Resour Res 3(2):451–464

    Article  Google Scholar 

  • Wright R (2004) A short history of progress. Anansi, Toronto

    Google Scholar 

  • Zézere JL, Trigo RM, Trigo IF (2005) Shallow and deep landslides induced by rainfall in the Lisbon region (Portugal). Nat Hazards Earth Syst Sci 5:331–344

    Article  Google Scholar 

Download references

Acknowledgments

This work was carried out within projects CAMGEO (CGL2006-11431, Plan Nacional de I+D+i, Spain) and SOE1/P2/F157 (Prog. Intereg SUDOE, European Union). Jaime Bonachea had a “Juan de la Cierva” postdoctoral contract (Ministerio de Ciencia e Innovación, Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viola Maria Bruschi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruschi, V.M., Bonachea, J., Remondo, J. et al. Land Management Versus Natural Factors in Land Instability: Some Examples in Northern Spain. Environmental Management 52, 398–416 (2013). https://doi.org/10.1007/s00267-013-0108-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00267-013-0108-7

Keywords

Navigation