Skip to main content

Advertisement

Log in

Noninvasive Shock Wave Treatment for Capsular Contractures After Breast Augmentation: A Rabbit Study

  • Original Article
  • Experimental/Special Topics
  • Published:
Aesthetic Plastic Surgery Aims and scope Submit manuscript

Abstract

Background

Capsular contracture is the most common complication of breast augmentation. Although numerous procedures are intended to prevent capsular contracture, their efficacy does not satisfy surgeons or patients. In the present study, we used shock waves to develop innovative protocols to treat capsular contracture in rabbits.

Methods

We used shock waves to treat capsular contracture in a rabbit model. Six clinical parameters were evaluated to determine the treatment efficacy of shock waves on the pathological histology of capsular contracture. Dual-flip-angle T1-mapping magnetic resonance imaging was used to confirm the pathological findings.

Results

Among the parameters, myxoid change, vascular proliferation, and lymphoplasma cell infiltration around the capsule increased more after treatment than they did in a control group. Capsular thickness, inner thinner collagen layer, and capsule wall collagen deposition decreased after shock wave treatment; only the inner thinner collagen layer and capsule wall collagen deposition changed significantly. The MRI findings for both scar thickness and water content were consistent with pathological biology findings.

Conclusion

This was the first pilot study and trial to treat capsular contractures using shock waves. We found that shock waves can cause changes in the structure or the composition of capsular contracture. We conclude that the treatment could decrease water content, loosen structure, decrease collagen deposition, and might alleviate scar formation from capsular contracture. We believe that the treatment could be a viable remedy for capsular contractures.

No Level Assigned

This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Embrey M, Adams EE, Cunningham B, Peters W, Young VL, Carlo GL (1999) A review of the literature on the etiology of capsular contracture and a pilot study to determine the outcome of capsular contracture interventions. Aesth Plast Surg 23(3):197–206

    Article  CAS  Google Scholar 

  2. Cucchiara V, Berry MG, Davies DM (2010) Breast augmentation: part II—adverse capsular contracture. J Plast Reconstr Aesthet Surg 63:2098–2107

    Article  PubMed  Google Scholar 

  3. Hall-Findlay EJ (2011) Breast implant complication review: double capsules and late seromas. Plast Reconstr Surg 127(1):56–66

    Article  CAS  PubMed  Google Scholar 

  4. Khan UD (2010) Breast augmentation, antibiotic prophylaxis, and infection: comparative analysis of 1,628 primary augmentation mammoplasties assessing the role and efficacy of antibiotics prophylaxis duration. Aesth Plast Surg 34(1):42–47

    Article  Google Scholar 

  5. Wong CH, Samuel M, Tan BK, Song C (2006) Capsular contracture in subglandular breast augmentation with textured versus smooth breast implants: a systematic review. Plast Reconstr Surg 118:1224–1235

    Article  CAS  PubMed  Google Scholar 

  6. Bastos EM, Neto MS, Alves MTS (2007) Histologic analysis of Zafirlukast’s effect on capsule formation around silicone implants. Aesth Plast Surg 31:559–565

    Article  Google Scholar 

  7. Schaub TA, Ahmad J, Rohrich RJ (2010) Capsular contracture with breast implants in the cosmetic patient: saline versus silicone–a systematic review of the literature. Plast Reconstr Surg 126(6):2140–2149

    Article  CAS  PubMed  Google Scholar 

  8. Oberie K, Allen M (1994) Breast augmentation surgery: a women’s health issue. J Adv Nurs 20:844–852

    Article  Google Scholar 

  9. Adams WP Jr, Haydon MS, Raniere J Jr, Trott S, Marques M, Feliciano M, Robinson JB Jr, Tang L, Brown SA (2006) A rabbit model for capsular contracture: development and clinical implications. Plast Reconstr Surg 117(4):1214–1219

    Article  CAS  PubMed  Google Scholar 

  10. Wang CJ (2012) Extracorporeal shockwave therapy in musculoskeletal disorders. J Orthop Surg Res 20:7–11

    Google Scholar 

  11. Houchen L, Watt A, Boyce S, Singh S (2012) A pilot study to explore the effectiveness of “early” rehabilitation after a hospital admission for chronic heart failure. Physiother Theory Pract 28(5):355–358

    Article  PubMed  Google Scholar 

  12. Buchbinder R, Green S, White M, Barnsley L, Smidt N, Assendelft WJ (2002) Shock wave therapy for lateral elbow pain. Cochrane Database Syst Rev (1): CD003524

  13. Chung B, Wiley JP (2004) Effectiveness of extracorporeal shock wave therapy in the treatment of previously untreated lateral epicondylitis: a randomized controlled trial. Am J Sports Med 32(7):1660–1667

    Article  PubMed  Google Scholar 

  14. Costa ML, Shepstone L, Donell ST, Thomas TL (2005) Shock wave therapy for chronic Achilles tendon pain: a randomized placebo-controlled trial. Clin Orthop Relat Res 440:199–204

    Article  CAS  PubMed  Google Scholar 

  15. LeBrun CM (2005) Low-dose extracorporeal shock wave therapy for previously untreated lateral epicondylitis. Clin J Sport Med 15(5):401–402

    Article  PubMed  Google Scholar 

  16. Mani-Babu S, Morrissey D, Waugh C, Screen H, Barton C (2015) The effectiveness of extracorporeal shock wave therapy in lower limb tendinopathy: a systematic review. Am J Sports Med 43(3):752–761

    Article  PubMed  Google Scholar 

  17. Speed C (2014) A systematic review of shockwave therapies in soft tissue conditions: focusing on the evidence. Br J Sports Med 48(21):1538–1542

    Article  PubMed  Google Scholar 

  18. Chung B, Wiley JP (2002) Extracorporeal shockwave therapy: a review. Sports Med 32(13):851–865

    Article  PubMed  Google Scholar 

  19. Steinacker T, Steuer M (2001) Use of extracorporeal shockwave therapy (ESWT) in sports orthopedics. Sportverl Sportschaden 15(2):45–49

    Article  CAS  Google Scholar 

  20. Diercks R, Bron C, Dorrestijn O, Meskers C, Naber R, de Ruiter T, Willems J, Winters J, van der Woude HJ (2014) Guideline for diagnosis and treatment of subacromial pain syndrome: a multidisciplinary review by the Dutch Orthopaedic Association. Acta Orthop 85(3):314–322

    Article  PubMed  PubMed Central  Google Scholar 

  21. Frairia R, Berta L (2012) Biological effects of extracorporeal shock waves on fibroblasts. A review. Muscles Ligaments Tendons J 1(4):138–147

    PubMed  PubMed Central  Google Scholar 

  22. Cheng JH, Wang CJ (2015) Biological mechanism of shockwave in bone. Int J Surg pii S1743–9191(15):00332–00335

    Google Scholar 

  23. Lyon R, Liu XC, Kubin M, Schwab J (2013) Does extracorporeal shock wave therapy enhance healing of osteochondritis dissecans of the rabbit knee?: a pilot study. Clin Orthop Relat Res 471(4):1159–1165

    Article  PubMed  PubMed Central  Google Scholar 

  24. Brand B, Kahl M, Sidhu S, Nam VC, Sriram PV, Jaeckle S, Thonke F, Soehendra N (2000) Prospective evaluation of morphology, function, and quality of life after extracorporeal shockwave lithotripsy and endoscopic treatment of chronic calcific pancreatitis. Am J Gastroenterol 95(12):3428–3438

    Article  CAS  PubMed  Google Scholar 

  25. Sahin C, Tuncer M, Yazıcı O, Horuz R, Çetinel AC, Eryıldırım B, Tarhan F, Sarica K (2014) Do the residual fragments after shock wave lithotripsy affect the quality of life? Urology 84(3):549–554

    Article  PubMed  Google Scholar 

  26. Smith FW, MacLennan F, Abramovich DR, MacGilivray I, Hutchison JM (1984) NMR imaging in human pregnancy: a preliminary study. Magn Reson Imaging 2(1):57–64

    Article  CAS  PubMed  Google Scholar 

  27. Hardy CJ, Edelstein WA, Vatis D, Harms R, Adams WJ (1985) Calculated T1 images derived from a partial saturation- inversion recovery pulse sequence with adiabatic fast passage. Magn Reson Imaging 3(2):107–116

    Article  CAS  PubMed  Google Scholar 

  28. Zhu DC, Penn RD (2005) Full-brain T1 mapping through inversion recovery fast spin echo imaging with time-efficient slice ordering. Magn Reson Med 54:725–731

    Article  PubMed  Google Scholar 

  29. Ordidge RJ, Gibbs P, Chapman B et al (1990) High-speed multislice T1 mapping using inversion-recovery echo-planar imaging. Magn Reson Med 16:238–245

    Article  CAS  PubMed  Google Scholar 

  30. Fram EK, Herfkens RJ, Johnson GA et al (1987) Rapid calculation of T1 using variable flip angle gradient refocused imaging. Magn Reson Imaging 5:201–208

    Article  CAS  PubMed  Google Scholar 

  31. Wang D, Shi L, Wang YX et al (2010) Concatenated and parallel optimization for the estimation of T1 map in FLASH MRI with multiple flip angles. Magn Reson Med 63:1431–1436

    Article  PubMed  Google Scholar 

  32. Wang HZ, Riederer SJ, Lee JN (1987) Optimizing the precision in T1 relaxation estimation using limited flip angles. Magn Reson Med 5:399–416

    Article  CAS  PubMed  Google Scholar 

  33. Cheng HLM, Wright GA (2006) Rapid high-resolution T1 mapping by variable flip angles: accurate and precise measurements in the presence of radiofrequency field inhomogeneity. Magn Reson Med 55:566–574

    Article  PubMed  Google Scholar 

  34. Wernicke M, Piñeiro LC, Caramutti D, Dorn VG, Raffo MM, Guixa HG, Telenta M, Morandi AA (2003) Breast cancer stromal myxoid changes are associated with tumor invasion and metastasis: a central role for hyaluronan. Mod Pathol 16(2):99–107

    Article  PubMed  Google Scholar 

  35. Stevens WG, Spring M, Stoker DA (2007) A review of 100 consective secondary augmentation/mastopexies. Aesth Surg J 27:485–492

    Article  CAS  Google Scholar 

  36. Sevin A, Sevin K, Senen D (2006) Augmentation mammaplasty: retrospective analysis of 210 cases. Aesth Plast Surg 30:651–654

    Article  Google Scholar 

  37. Holmich LR, Lipworth L, McLaughlin JK (2007) Breast implant rupture and connective tissue disease: a review of the literature. Plast Reconstr Surg 120:62S

    Article  CAS  PubMed  Google Scholar 

  38. Fisher J (2007) Breast augmentation using silicone gel-filled implants. Aesth Surg J 27:551–557

    Article  CAS  Google Scholar 

  39. Góes JCS (2010) Breast implant stability in the subfascial plane and the new shaped silicone gel breast implants. Aesth Plast Surg 34:23–28

    Article  Google Scholar 

  40. Prantl L, Schreml S, Stefan F-F et al (2007) Clinical and morphological conditions in capsular contracture formed around silicone breast implants. Plast Reconstr Surg 120:275

    Article  CAS  PubMed  Google Scholar 

  41. Antonio CA, Valeria RD, Miguel CL-S (2010) How texture-inducing contraction vectors affect the fibrous capsule shrinkage around breasts implants? Aesth Plast Surg 34:555–560

    Article  Google Scholar 

  42. Yu L, Wang J, Zhang B, Zhu C (2008) Endoscopic transaxillary capsular contracture treatment. Anes Palst Surg 32:329–332

    CAS  Google Scholar 

  43. Coleman DJ, Foo IT, Sharpe DT (1991) Textured or smooth implants for breast augmentation: a prospective controlled trial. Br J Plast Surg 44:444

    Article  CAS  PubMed  Google Scholar 

  44. Fagrell D, Berggren A, Trapila E (2001) Capsular contracture around saline-filled fine textured and smooth mammary implants: a prospective 7.5-year follow-up. Plast Reconstr Surg 108:2108

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Kaohsiung Armed Force general Hospital, Taiwan (No. 101-17 and 102-10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Chiuan Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, P.C., Kuo, S.M., Jao, J.C. et al. Noninvasive Shock Wave Treatment for Capsular Contractures After Breast Augmentation: A Rabbit Study. Aesth Plast Surg 40, 435–445 (2016). https://doi.org/10.1007/s00266-016-0643-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00266-016-0643-8

Keywords

Navigation