Skip to main content

Advertisement

Log in

Current Concepts in Scar Evolution and Control

  • Review
  • Published:
Aesthetic Plastic Surgery Aims and scope Submit manuscript

Abstract

The basic principles influencing scar expression and outcome have long been defined. Although these were relatively clear at the time, the exact events at a molecular level were poorly defined. The past decade has delineated the myriad of events that occur in the run-up to scar evolution far more clearly, although the intricate details have yet to be elucidated. What is clear is that a series of conversations and crosstalk takes place in the cell cytosol, in the cellular nucleus, and outside the cell within in the extracellular matrix. This interaction or “dynamic reciprocity” takes place via a series of signals, protein activation, ionic translocations, and receptor transactions. Marrying the previously defined principles with current described cellular/extracellular matrix (ECM) interactions enables us to describe more accurately the crosstalk occurring in scar evolution and possibly to influence the “wording” of that crosstalk to improve scar outcome. Thus, the principles of mechanostimulation and scar support, hydration occlusion, controlled inflammation, and collagen/extracellular remodeling are discussed with possible interventions in each category.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Widgerow AD, Chait LA, Stals R, Stals P (2000) New innovations in scar management. Aesthet Plast Surg 24:227

    Article  CAS  Google Scholar 

  2. Widgerow AD, Chait LAC, Stals R, Stals P, Candy G (2009) Multimodality scar management program. Aesthet Plast Surg 33(4):533

    Article  Google Scholar 

  3. Elliot D, Cory-Pearce R, Rees GM (1985) The behaviour of presternal scars in a fair-skinned population. Ann R Coll Surg Engl 67:238

    PubMed  CAS  Google Scholar 

  4. Meyer M, McGrouther DA (1991) A study relating wound tension to scar morphology in the presternal scar using Langers technique. Br J Plast Surg 44:291

    Article  PubMed  CAS  Google Scholar 

  5. Chiquet M, Gelman L, Lutz R, Maier S (2009) From mechanotransduction to extracellular matrix gene expression in fibroblasts. Biochim Biophys Acta 1793:911–920

    Article  PubMed  CAS  Google Scholar 

  6. Munevar S, Wang Y, Dembo M (2004) Regulation of mechanical interactions between fibroblasts and the substratum by stretch-activated Ca2+ entry. J Cell Sci 117:85–92

    Article  PubMed  CAS  Google Scholar 

  7. Li C, Xu Q (2007) Mechanical stress-initiated signal transduction in vascular smooth muscle cells in vitro and in vivo. Cell Signal 19:881–891

    Article  PubMed  CAS  Google Scholar 

  8. Jalali S, del Pozo MA, Chen K, Miao H, Li Y, Schwartz MA, Shyy JY, Chien S (2001) Integrin-mediated mechanotransduction requires its dynamic interaction with specific extracellular matrix (ECM) ligands. Proc Natl Acad Sci USA 98:1042–1046

    Article  PubMed  CAS  Google Scholar 

  9. Reiffel RS (1995) Prevention of hypertrophic scars by long term paper tape application. Plast Reconstr Surg 96:1715

    Article  PubMed  CAS  Google Scholar 

  10. Atkinson JM, McKenna KT, Barnett AG, McGrath DJ, Rudd M (2005) A randomized controlled trial to determine the efficacy of paper tape in preventing hypertrophic scar formation in surgical excisions that traverse Langer’s skin tension lines. Plastic Reconstr Surg 116(6):1648–1656 (discussion 1657–1658)

    Article  CAS  Google Scholar 

  11. Sawada Y, Sone K (1992) Hydration and occlusion treatment for hypertrophic scars and keloids. Br J Plast Surg 45:599

    Article  PubMed  CAS  Google Scholar 

  12. Mustoe TA, Cooter RD, Gold MH, Hobbs FD, Ramelet AA, Shakespeare PG, Stella M, Téot L, Wood FM, Ziegler UE, International Advisory Panel on Scar Management (2002) International clinical recommendations on scar management. Plast Reconstr Surg 110(2):560–571

    Article  PubMed  Google Scholar 

  13. Sawada Y, Urushidate S, Nihei Y (1998) Hydration and occlusive treatment of a sutured wound. Ann Plast Surg 41:508

    Article  PubMed  CAS  Google Scholar 

  14. Mustoe TA (2008) Evolution of silicone therapy and mechanism of action in scar management. Aesthet Plast Surg 32(1):82–92

    Article  Google Scholar 

  15. Tandara AA, Mustoe TA (2008) The role of the epidermis in the control of scarring: evidence for mechanism of action for silicone gel. J Plast Reconstr Aesthet Surg 61(10):1219–1225

    Article  PubMed  Google Scholar 

  16. Tandara AA, Mustoe TA (2010) MMP- and TIMP-secretion by human cutaneous keratinocytes and fibroblasts—Impact of coculture and hydration. J Plast Reconstr Aesthet Surg. doi:10.1016/j.bjps.2010.03.051

  17. Gallant-Behm CL, Mustoe TA (2010) Occlusion regulates epidermal cytokine production and inhibits scar formation. Wound Repair Regen 18(2):235–244

    Article  PubMed  Google Scholar 

  18. Bock O, Yu H, Zitron S, Bayat A, Ferguson M, Mrowietz U (2005) Studies of transforming growth factors beta 1–3 and their receptors I and II in fibroblasts of keloid and hypertrophic scars. Acta Derm Venereol 85:216–220

    PubMed  CAS  Google Scholar 

  19. Lee T, Chin G, Kim W, Chau D, Gittes G, Longaker M (1999) Expression of transforming growth factor beta 1, 2 and 3 proteins in keloids. Ann Plast Surg 43:179–184

    PubMed  CAS  Google Scholar 

  20. ten Dijke P, Hill C (2004) New insights into TGF-beta-SMAD signalling. Trends Biochem Sci 29:265–273

    Article  PubMed  CAS  Google Scholar 

  21. Flanders K (2004) SMAD3 as a mediator of the fibrotic response. Int J Exp Pathol 86:47–64

    Article  Google Scholar 

  22. Kopp J, Pries E, Said H, Hafemann B, Wickert L, Gressner A, Pallua N, Dooley S (2005) Abrogation of transforming growth factor-beta signaling by SMAD 7 inhibits collagen gel contraction of human dermal fibroblasts. J Biol Chem 280:21570–21576

    Article  PubMed  CAS  Google Scholar 

  23. Nakao A, Afrakhte M, Moren A, Nakayama T, Christian J, Heuchel R, Itoh S, Kawabata M, Heldin N, Heldin C, ten Dijke P (1997) Identification of SMAD 7, a TGF-beta-inducible antagonist of TGF-beta signalling. Nature 389:549–551

    Google Scholar 

  24. Chan KY, Lau CL, Adeeb SM, Somasundaram S, Nasir-Zahari M (2005) A randomized, placebo-controlled, double-blind, prospective clinical trial of silicone gel in prevention of hypertrophic scar development in median sternotomy wound. Plast Reconstr Surg 116:1013–1020

    Article  PubMed  CAS  Google Scholar 

  25. Gold MH, Foster TD, Adair MA, Burlison K, Lewis T (2001) Prophylactic use of topical silicone gel sheets following a surgical procedure in an office setting. Dermatol Surg 27(7):641–644

    Article  PubMed  CAS  Google Scholar 

  26. Niessen FB, Spauwen PH, Robinson PH, Fidler V, Kon M (1998) The use of silicone occlusive sheeting (Sil-K) and silicone occlusive gel (Epiderm) in the prevention of hypertrophic scar formation. Plast Reconstr Surg 102(6):1962–1972

    Article  PubMed  CAS  Google Scholar 

  27. Momeni M, Hafezi F, Rahbar H, Karimi H (2009) Effects of silicone gel on burn scars. Burns 35(1):70–74

    Article  PubMed  Google Scholar 

  28. Singer AJ, Clark RA (1999) Cutaneous wound healing. N Engl J Med 341:738–746

    Article  PubMed  CAS  Google Scholar 

  29. White CR (2004) In: Barnhill RL, Crowson AN (eds) Textbook of dermatopathology. McGraw Hill, New York, pp 349–355

    Google Scholar 

  30. ChenW Fu X, Ge S, Sun T, Zhou G, Jiang D, Sheng Z (2005) Ontogeny of expression of transforming growth factor-beta and its receptors and their possible relationship with scarless healing in human fetal skin. Wound Repair Regen 13:68–75

    Article  Google Scholar 

  31. Wilgus TA, Bergdall VK, Tober KL, Hill KJ, Mitra S, Flavahan NA, Oberyszyn TM (2004) The impact of cyclooxygenase-2 mediated inflammation on scarless fetal wound healing. Am J Pathol 165:753–761

    Article  PubMed  CAS  Google Scholar 

  32. Sheridan RL, Tompkins RG (2004) What’s new in burns and metabolism. J Am Coll Surg 198:243–263

    Article  PubMed  Google Scholar 

  33. Brinkhaus B, Lindner M, Schuppan D, Hahn EG (2000) Chemical, pharmacological and clinical profile of the East Asian medical plant Centella asiatica. Phytomedicine 7:427–448

    Article  PubMed  CAS  Google Scholar 

  34. Saika S, Ikeda K, Yamanaka O, Flanders KC, Okada Y, Miyamoto T, Kitano A, Ooshima A, Nakajima Y, Ohnishi Y, Kao WW (2006) Loss of tumor necrosis factor alpha potentiates transforming growth factor beta-mediated pathogenic tissue response during wound healing. Am J Pathol 168:1848–1860

    Article  PubMed  CAS  Google Scholar 

  35. Aarabi S, Longaker MT, Gurtner GC (2007) Hypertrophic scar formation following burns and trauma: new approaches to treatment. PLoS Med 4(9):e234

    Article  PubMed  Google Scholar 

  36. Freedberg IM, Tomic-Canic M, Komine M, Blumenberg M (2001) Keratins and the keratinocyte activation cycle. J Invest Dermatol 116(5):633–640

    Article  PubMed  CAS  Google Scholar 

  37. Ulrich MM, Verkerk M, Reijnen L, Vlig M, van den Bogaerdt AJ, Middelkoop E (2007) Expression profile of proteins involved in scar formation in the healing process of full-thickness excisional wounds in the porcine model. Wound Repair Regen 15(4):482–490

    Article  PubMed  Google Scholar 

  38. van der Slot AJ, Zuurmond AM, van den Bogaerdt AJ, Ulrich MM, Middelkoop E, Boers W, Karel Ronday H, DeGroot J, Huizinga TW, Bank RA (2004) Increased formation of pyridinoline cross-links due to higher telopeptide lysyl hydroxylase levels is a general fibrotic phenomenon. Matrix Biol 23(4):251–257

    Article  PubMed  Google Scholar 

  39. Zhang F, Laiho M (2003) On and off: proteasome and TGF-β signaling. Exp Cell Res 291:275–281

    Article  PubMed  CAS  Google Scholar 

  40. Attisano L, Wotton L (2002) Signal transduction by the TGF-β super-family. Science 296:1646–1647

    Article  PubMed  CAS  Google Scholar 

  41. Ju-lin X, Shao-hai Q, Tian-zeng T, Bin H, Jing-ming T, Ying-bin X, Xu-sheng L, Bin S, Hui-zhen L, Yong H (2009) Effect of asiaticoside on hypertrophic scar in the rabbit ear model. J Cutan Pathol 36:234–239

    Article  PubMed  Google Scholar 

  42. Huang L, Chen CH (2009) Proteasome regulators: activators and inhibitors. Curr Med Chem 16(8):931–939

    Article  PubMed  CAS  Google Scholar 

  43. Katsiki M, Chondrogianni N, Chinou I, Rivett AJ, Gonos ES (2007) The olive constituent oleuropein exhibits proteasome stimulatory properties in vitro and confers life span extension of human embryonic fibroblasts. Rejuvenation Res 10(2):157–172

    Article  PubMed  CAS  Google Scholar 

  44. Wilgus TA, Vodovotz Y, Vittadini E, Clubbs EA, Oberyszyn TM (2003) Reduction of scar formation in full-thickness wounds with topical celecoxib treatment. Wound Repair Regen 11:25–34

    Article  PubMed  Google Scholar 

  45. Muscara MN, McKnight W, Asfaha S, Wallace JL (2000) Wound collagen deposition in rats: effects of an NO-NSAID and a selective COX-2 inhibitor. Br J Pharmacol 129:681–686

    Article  PubMed  CAS  Google Scholar 

  46. Wilgus TA, Bergdall VK, Tober KL, Hill KJ, Mitra S, Flavahan NA, Oberyszyn TM (2004) The impact of cyclooxygenase-2 mediated inflammation on scarless fetal wound healing. Am J Pathol 165(3):753–761

    Article  PubMed  CAS  Google Scholar 

  47. Zhang Z, Qin DL, Wan JY, Zhou QX, Xiao SH, Wu K (2008) Effects of asiaticoside on the balance of inflammatory factors of mouse’s acute lung injury induced by LPS. Zhong Yao Cai 31(4):547–549 (in Chinese)

    PubMed  Google Scholar 

  48. Shukla A, Rasik AM, Dhawan BN (1999) Asiaticoside-induced elevation of antioxidant levels in healing wounds. Phytother Res 13:50–54

    Article  PubMed  CAS  Google Scholar 

  49. Hong SS, Kim JH, Li H, Shim CK (2005) Advanced formulation and pharmacological activity of hydrogel of the titrated extract of C. asiatica. Arch Pharm Res 28:502–508

    Article  PubMed  CAS  Google Scholar 

  50. Shetty BS, Udupa SL, Udupa AL, Somayaji SN (2006) Effect of Centella asiatica (Umbelliferae) on normal and dexamethasone-suppressed wound healing in Wistar Albino rats. Int J Low Extrem Wounds 5:137–143

    Article  PubMed  Google Scholar 

  51. Zhang T, Rong XZ, Yang RH, Li TZ, Xu YB (2006) Effect of asiaticoside on the expression of transforming growth factor-beta mRNA and matrix metalloproteinases in hypertrophic scars. Nan Fang Yi Ke Da Xue Xue Bao 26(1):67–70 (in Chinese)

    PubMed  Google Scholar 

  52. Maquart FX, Bellon G, Gillery P, Wegrowski Y, Borel JP (1990) Stimulation of collagen synthesis in fibroblast cultures by a triterpene extracted from Centella asiatica. Connect Tissue Res 24(2):107–120

    Article  PubMed  CAS  Google Scholar 

  53. Bonte F, Dumas M, Chaudagne C, Meybeck A (1994) Influence of asiatic acid, madecassic acid, and asiaticoside on human collagen I synthesis. Planta Med 60(2):133–135

    Article  PubMed  CAS  Google Scholar 

  54. Lu L, Ying K, Wei S, Fang Y, Liu Y, Lin H, Ma L, Mao Y (2004) Asiaticoside induction for cell-cycle progression, proliferation and collagen synthesis in human dermal fibroblasts. Int J Dermatol 43(11):801–807

    Article  PubMed  CAS  Google Scholar 

  55. Atiyeh BS (2007) Nonsurgical management of hypertrophic scars: evidence-based therapies, standard practices, and emerging methods. Aesthetic Plast Surg 31:468–492 (discussion 493–494)

    Article  PubMed  Google Scholar 

  56. Kimura Y, Sumiyoshi M, Samukawa K, Satake N, Sakanaka M (2008) Facilitating action of asiaticoside at low doses on burn wound repair and its mechanism. Eur J Pharm 584:415–423

    Article  CAS  Google Scholar 

  57. Ullah MO, Sultana S, Haque A, Tasmin S (2009) Antimicrobial, cytotoxic and antioxidant activity of Centella asiatica. Eur J Sci Res 30(2):260–264

    Google Scholar 

  58. Qi SH, Xie JL, Pan S, Xu YB, Li TZ, Tang JM, Liu XS, Shu B, Liu P (2007) Effects of asiaticoside on the expression of SMAD protein by normal skin fibroblasts and hypertrophic scar fibroblasts. Clin Exp Dermatol 33:171–175

    Article  Google Scholar 

  59. Lee J, Jung E, Kim Y, Park J, Park J, Hong S, Kim J, Hyun C, Kim YS, Park D (2006) Asiaticoside induces human collagen I synthesis through TGFbeta receptor I kinase (TbetaRI kinase)-independent SMAD signaling. Planta Med 72(4):324–328

    Article  PubMed  CAS  Google Scholar 

  60. Yun KJ, Kima JY, Kima JB, Lee KW, Jeong SY, Park HJ, Jung HJ, Cho YW, Yun K, Lee K (2008) Inhibition of LPS-induced NO and PGE2 production by asiatic acid via NF-κB inactivation in RAW 264.7 macrophages: Possible involvement of the IKK and MAPK pathways. Int Immunopharmacol 8:431–441

    Article  PubMed  CAS  Google Scholar 

  61. Procopio A, Alcaro S, Nardi M, Oliverio M, Ortuso F, Sacchetta P, Pieragostino D, Sindona G (2009) Synthesis, biological evaluation, and molecular modeling of oleuropein and its semisynthetic derivatives as cyclooxygenase inhibitors. J Agric Food Chem 57(23):11161–11167

    Article  PubMed  CAS  Google Scholar 

  62. Beauchamp GK, Keast RS, Morel D, Lin J, Pika J (2005) Phytochemistry: ibuprofen-like activity in extra-virgin olive oil. Nature 437:45–46

    Article  PubMed  CAS  Google Scholar 

  63. de la Puerta R, Martinez-Dominguez E, Ruiz-Gutierrez V (2000) Effect of minor components of virgin olive oil on topical anti-inflammatory assays. Z Naturforsch C 55(9–10):814–819

    PubMed  Google Scholar 

  64. Puel C (2004) Olive oil and its main phenolic micronutrient (oleuropein) prevent inflammation-induced bone loss in the ovariectomised rat. Br J Nutr 92(1):119–127

    Article  PubMed  CAS  Google Scholar 

  65. Visioli F, Bogani P, Grande S, Galli C (2004) Olive oil and oxidative stress. Grasas Aceites 55(1):66–75

    Article  CAS  Google Scholar 

  66. Zhang Z, Li XJ, Liu Y, Zhang X, Li YY, Xu WS (2007) Recombinant human decorin inhibits cell proliferation and downregulates TGF-beta1 production in hypertrophic scar fibroblasts. Burns 33(5):634–641

    Article  PubMed  Google Scholar 

  67. van der Veer W, Bloemen MCT, Ulrich MMW, Molema G, van Zuijlen PP, Middelkoop E, Niessen FB (2009) Potential cellular and molecular causes of hypertrophic scar formation. Burns 35(1):15–29

    Article  PubMed  Google Scholar 

  68. Puig A, Anton GMJ, Mangues M (2007) A new decorin-like tetrapeptide for optimal organization of collagen fibres. IFSCC Magazine 10(4):309

    CAS  Google Scholar 

  69. Wess TJ (2005) Collagen fibril form and function. Adv Protein Chem 70:341–374

    Article  PubMed  CAS  Google Scholar 

  70. Liu X, Wu H, Byrne M, Krane S, Jaenisch R (1997) Type III collagen is crucial for collagen I fibrillogenesis and for normal cardiovascular development. Proc Natl Acad Sci USA 94(5):1852–1856

    Article  PubMed  CAS  Google Scholar 

  71. Hayakawa T, Hashimoto Y, Myokei Y, Aoyama H, Izawa Y (1979) Changes in type of collagen during the development of human post-burn hypertrophic scars. Clin Chim Acta 93(1):119–125

    Article  PubMed  CAS  Google Scholar 

  72. Zhang K, Garner W, Cohen L, Rodriguez J, Phan S (1995) Increased types I and III collagen and transforming growth factor-beta 1mRNA and protein in hypertrophic burn scar. J Invest Dermatol 104(5):750–754

    Article  PubMed  CAS  Google Scholar 

  73. Scott PG, Dodd CM, Ghahary A, Shen YJ, Tredget EE (1998) Fibroblasts from post-burn hypertrophic scar tissue synthesize less decorin than normal dermal fibroblasts. Clin Sci 94(5):541–547

    PubMed  CAS  Google Scholar 

  74. Romanic AM, Adachi E, Hojima Y, Engel J, Prockop DJ (1992) Polymerization of pNcollagen I and copolymerization of pNcollagen I with collagen. I. A kinetic, thermodynamic, and morphologic study. J Biol Chem 267(31):22265–22271

    PubMed  CAS  Google Scholar 

  75. van der Slot-Verhoeven AJ, van Dura EA, Attema J, Blauw B, DeGroot J, Huizinga TW, Zuurmond AM, Bank RA (2005) The type of collagen cross-link determines the reversibility of experimental skin fibrosis. Biochim Biophys Acta 1740(1):60–67

    Article  PubMed  Google Scholar 

  76. Wan KC, Chan HP, Hung LK, Wu HT (2002) Effects of antioxidants on pyridinoline cross-link formation in culture supernatants of fibroblasts from normal skin and hypertrophic scars. Clin Exp Dermatol 27:507–512

    Article  PubMed  CAS  Google Scholar 

  77. Ko KS, Arora PD, McCulloch CAG (2001) Cadherins mediate intercellular mechanical signaling in fibroblasts by activation of stretch-sensitive calcium-permeable channels. J Biol Chem 276:35967–35977

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosures

Dr. Widgerow serves as an R&D consultant for Litha Healthcare Inc. and receives consulting fees.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan D. Widgerow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Widgerow, A.D. Current Concepts in Scar Evolution and Control. Aesth Plast Surg 35, 628–635 (2011). https://doi.org/10.1007/s00266-010-9635-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00266-010-9635-2

Keywords

Navigation