Skip to main content
Log in

Diversity in identity: behavioral flexibility, dominance, and age polyethism in a clonal ant

  • Original Paper
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

In many species of social insects, division of non-reproductive labor is to some extent affected by age, in that younger individuals engage in activities in the nest, whereas older individuals forage. While the link between age and task is less robust than originally thought, the transition from nursing to foraging is associated with large changes in gene expression, neuroanatomy, and physiology and therefore seems largely irreversible. Here, we investigate division of labor in the thelytokous ant Platythyrea punctata. Since it forms clonal colonies, it is an ideal model to investigate the behavioral flexibility of individuals and the proximate mechanisms underlying division of labor, while avoiding confounding factors, such as variation in genotype or morphology. We found that nurses and foragers of P. punctata differ in residual life span, fat content, fecundity, and the propensity to engage in dominance interactions. However, age-based division of labor appears to be flexible: foragers can revert to nursing and egg laying, even though they appear less fecund than original nurse workers. Interestingly, the transition from foraging to nursing seemed to slow down aging and senescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amdam GV, Aase ALT, Seehuus SC, Fondrk MK, Norberg K, Hartfelder K (2005) Social reversal of immunosenescence in honey bee workers. Exp Gerontol 40:939–947

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bajda M, Strachecka A, Paleolog J (2013) Rewersja procesu starzenia u pszczół miodnych (Apis mellifera)? Med Weter 69:707–711

    Google Scholar 

  • Baker N, Wolschin F, Amdam GV (2012) Age-related learning deficits can be reversible in honeybees Apis mellifera. Exp Gerontol 47:764–772

    Article  PubMed  Google Scholar 

  • Beekman M, Oldroyd BP (2008) When workers disunite: intraspecific parasitism by eusocial bees. Annu Rev Entomol 53:19–37

    Article  CAS  PubMed  Google Scholar 

  • Blanchard GB, Orledge GM, Reynolds SE, Franks NR (2000) Division of labour and seasonality in the ant Leptothorax albipennis: worker corpulence and its influence on behaviour. Anim Behav 59:723–738

    Article  PubMed  Google Scholar 

  • Breed MD, Harrison JM (1988) Worker size, ovary development and division of labor in the giant tropical ant, Paraponera clavata (Hymenoptera: Formicidae). J Kansas Entomol Soc 61:285–291

    Google Scholar 

  • Brunner E, Kellner K, Heinze J (2009) Policing and dominance behaviour in the parthenogenetic ant Platythyrea punctata. Anim Behav 78:1427–1431

    Article  Google Scholar 

  • Daugherty THF, Toth AL, Robinson GE (2011) Nutrition and division of labor: effects on foraging and brain gene expression in the paper wasp Polistes metricus. Mol Ecol 20:5337–5347

    Article  CAS  PubMed  Google Scholar 

  • Dolezal AG, Brent CS, Hölldobler B, Amdam GV (2012) Worker division of labor and endocrine physiology are associated in the harvester ant, Pogonomyrmex californicus. J Exp Biol 215:454–460

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dolezal AG, Johnson J, Hölldobler B, Amdam GV (2013) Division of labor is associated with age-independent changes in ovarian activity in Pogonomyrmex californicus harvester ants. J Insect Physiol 59:519–524

    Article  CAS  PubMed  Google Scholar 

  • Fénéron R, Durand JL, Jaisson P (1996) Relation between behaviour and physiological maturation in a ponerine ant. Behaviour 133:791–806

    Article  Google Scholar 

  • Foster RL, Brunskill A, Verdirame D, O'Donnell S (2004) Reproductive physiology, dominance interactions, and division of labour among bumble bee workers. Physiol Entomol 29:327–334

    Article  Google Scholar 

  • Fresneau D (1984) Développement ovarien et statut social chez une fourmi primitive Neoponera obscuricornis Emery (Hym.: Formicidae, Ponerinae). Insect Soc 31:387–402

    Article  Google Scholar 

  • Fuchikawa T, Okada Y, Miyatake T, Tsuji K (2014) Social dominance modifies behavioral rhythm in a queenless ant. Behav Ecol Sociobiol 68:1843–1850

    Article  Google Scholar 

  • Giraudoux P (2014) pgirmess: data analysis in ecology. R package version 1.5.9. http://CRAN.R-project.org/package=pgirmess

  • Gordon DM (1989) Dynamics of task switching in harvester ants. Anim Behav 38:194–204

    Article  Google Scholar 

  • Gordon DM (1996) The organization of work in social insect colonies. Nature 380:121–124

    Article  CAS  Google Scholar 

  • Hartmann A, Heinze J (2003) Lay eggs, live longer: division of labor and life span in a clonal ant species. Evolution 57:2424–2429

    Article  PubMed  Google Scholar 

  • Heinze J, Hölldobler B (1995) Thelytokous parthenogenesis and dominance hierarchies in the ponerine ant, Platythyrea punctata. Naturwissenschaften 82:40–41

    CAS  Google Scholar 

  • Herb BR, Wolschin F, Hansen KD, Aryee MJ, Langmead B, Irizarry R, Amdam GV, Feinberg AP (2012) Reversible switching between epigenetic states in honeybee behavioral subcastes. Nat Neurosci 15:1371–1373

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hölldobler B, Wilson EO (1986) Ecology and behavior of the primitive cryptobiotic ant Prionopelta amabilis. Insect Soc 33:45–58

    Article  Google Scholar 

  • Hölldobler B, Wilson EO (1990) The ants. Belknap, Cambridge

    Book  Google Scholar 

  • Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70

    Google Scholar 

  • Kellner K, Heinze J (2011) Mechanism of facultative parthenogenesis in the ant Platythyrea punctata. Evol Ecol 25:77–89

    Article  Google Scholar 

  • Kellner K, Barth B, Heinze J (2010) Colony fusion causes within-colony variation in a parthenogenetic ant. Behav Ecol Sociobiol 64:737–746

    Article  Google Scholar 

  • Korczyńska J, Szczuka A, Symonowicz B, Wnuk A, Anna GS, Mazurkiewicz PJ, Studnicki M, Godzińska EJ (2014) The effects of age and past and present behavioral specialization on behavior of workers of the red wood ant Formica polyctena Först. during nestmate reunion tests. Behav Process 107:29–41

    Article  Google Scholar 

  • Kronauer DJ, Pierce NE, Keller L (2012) Asexual reproduction in introduced and native populations of the ant Cerapachys biroi. Mol Ecol 21:5221–5235

    Article  PubMed  Google Scholar 

  • Kuszewska K, Woyciechowski M (2013) Reversion in honeybee, Apis mellifera, workers with different life expectancies. Anim Behav 85:247–253

    Article  Google Scholar 

  • Martin P, Bateson P (1986) Measuring behaviour. Cambridge University Press, Cambridge

    Google Scholar 

  • Maynard Smith J, Szathmáry E (1995) The major transitions in evolution. Oxford University Press, Oxford

    Google Scholar 

  • Münch D, Baker N, Rasmussen EM, Shah AK, Kreibich CD, Heidem LE, Amdam GV (2013) Obtaining specimens with slowed, accelerated and reversed aging in the honey bee model. J Vis Exp 78

  • Nakata K (1995) Age polyethism, idiosyncrasy and behavioural flexibility in the queenless ponerine ant, Diacamma sp. J Ethol 13:113–123

    Article  Google Scholar 

  • Oldroyd BP, Fewell JH (2007) Genetic diversity promotes homeostasis in insect colonies. Trends Ecol Evol 22:408–413

    Article  PubMed  Google Scholar 

  • Oster GF, Wilson EO (1978) Caste and ecology in the social insects. Princeton University Press, Princeton

    Google Scholar 

  • Page RE, Peng CYS (2001) Aging and development in social insects with emphasis on the honey bee, Apis mellifera L. Exp Gerontol 36:695–711

    Article  PubMed  Google Scholar 

  • Penick CA, Liebig J, Brent CS (2011) Reproduction, dominance, and caste: endocrine profiles of queens and workers of the ant Harpegnathos saltator. J Comp Physiol A 197:1063–1071

    Article  CAS  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D (2014) nlme: linear and nonlinear mixed effects models. R package version 3.1-117. http://CRAN.R-project.org/package=nlme

  • R Core Team (2014) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. http://www.R-project.org/

  • Ravary F, Jaisson P (2004) Absence of individual sterility in thelytokous colonies of the ant Cerapachys biroi Forel (Formicidae, Cerapachyinae). Insect Soc 51:67–73

    Article  Google Scholar 

  • Ravary F, Lecoutey E, Kaminski G, Chaline N, Jaisson P (2007) Individual experience alone can generate lasting division of labor in ants. Curr Biol 15:1308–1312

    Article  Google Scholar 

  • Ripley B, Venables B, Bates DM, Hornik K, Gebhardt A, Firth D (2014) Support functions and datasets for Venables and Ripley’s MASS. R package version 7.3-35. http://www.CRAN.R-project.org/package=MASS

  • Robinson GE (1992) Regulation of division of labor in insect societies. Annu Rev Entomol 37:637–665

    Article  CAS  PubMed  Google Scholar 

  • Robinson GE, Page RE, Strambi C, Strambi A (1992) Colony integration in honey bees: mechanisms of behavioral reversion. Ethol 90:336–348

    Article  CAS  Google Scholar 

  • Robinson EJH, Feinermann O, Franks NR (2012) Experience, corpulence and decision making in ant foraging. J Exp Biol 215:2653–2659

    Article  PubMed  Google Scholar 

  • Schilder K, Heinze J, Gross R, Hölldobler B (1999a) Microsatellites reveal clonal structure of populations of the thelytokous ant Platythyrea punctata (F. Smith) (Hymenoptera; Formicidae). Mol Ecol 8:1497–1507

    Article  PubMed  Google Scholar 

  • Schilder K, Heinze J, Hölldobler B (1999b) Colony structure and reproduction in the thelytokous parthenogenetic ant Platythyrea punctata (F. Smith)(Hymenoptera, Formicidae). Insect Soc 46:150–158

    Article  Google Scholar 

  • Seeley TD (1985) Honeybee ecology: a study of adaptation in social life. Princeton University Press, Princeton

    Book  Google Scholar 

  • Sendova-Franks A, Franks NR (1993) Task allocation in ant colonies within variable environments (a study of temporal polyethism: experimental). Bull Math Biol 55:75–96

    Article  Google Scholar 

  • Siegel S, Castellan NJ (1988) Non-parametric statistics for the behavioral sciences, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  • Smeeton L (1982) The effect of age on the production of reproductive eggs by workers of Myrmica rubra L. (Hym. Formicidae). Insect Soc 29:465–474

    Article  Google Scholar 

  • Smith CR, Toth AL, Suarez AV, Robinson GE (2008) Genetic and genomic analyses of the division of labour in insect societies. Nat Rev Genet 9:735–748

    Article  CAS  PubMed  Google Scholar 

  • Smith CR, Suarez AV, Tsutsui ND, Wittman SE, Edmonds B, Freauff A, Tillberg CV (2011) Nutritional asymmetries are related to division of labor in a queenless ant. PLoS One 6, e24011

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stieb SM, Muenz TS, Wehner R, Rössler W (2010) Visual experience and age affect synaptic organization in the mushroom bodies of the desert ant Cataglyphis fortis. Dev Neurobiol 70:408–423

    Article  PubMed  Google Scholar 

  • Stuart RJ, Page RE (1991) Genetic component to division of labor among workers of a leptothoracine ant. Naturwissenschaften 78:375–377

    Article  Google Scholar 

  • Therneau T (2012) Coxme: mixed effects cox models. R package version 2.2–3. http://cran.r-project.org/web/packages/coxme/index.html

  • Tibbetts EA, Levy S, Donajkowski K (2011) Reproductive plasticity in Polistes paper wasp workers and the evolutionary origins of sociality. J Insect Physiol 57:995–999

    Article  CAS  PubMed  Google Scholar 

  • Toth AL, Robinson GE (2005) Worker nutrition and division of labour in honeybees. Anim Behav 69:427–435

    Article  Google Scholar 

  • Toth AL, Kantarovich S, Meisel AF, Robinson GE (2005) Nutritional status influences socially regulated foraging ontogeny in honey bees. J Exp Biol 208:4641–4649

    Article  PubMed  Google Scholar 

  • Tsuji K (1988) Obligate parthenogenesis and reproductive division of labor in the Japanese queenless ant Pristomyrmex pungens. Behav Ecol Sociobiol 23:247–255

    Article  Google Scholar 

  • Tsuji K (1990) Reproductive division of labour related to age in the Japanese queenless ant, Pristomyrmex pungens. Anim Behav 39:843–849

    Article  Google Scholar 

  • Tsuji K, Dobata S (2011) Social cancer and the biology of the clonal ant Pristomyrmex punctatus (Hymenoptera: Formicidae). Myrmecol News 15:91–99

    Google Scholar 

  • Villet MH (1991a) Social differentiation and division of labour in the queenless ant Platythyrea schultzei Forel 1910 (Hymenoptera Formicidae). Trop Zool 4:13–29

    Article  Google Scholar 

  • Villet MH (1991b) Reproduction and division of labour in Platythyrea cf. cribrinodis (Gerstaecker 1858) (Hymenoptera Formicidae): comparisons of individuals, colonies and species. Trop Zool 4:209–231

    Article  Google Scholar 

  • Warnes GR, Bolker B, Bonebakker L, Gentleman R, Liaw WHA, Lumley T, Maechler M, Magnusson A, Moeller S, Schwartz M, Venables B (2015) gplots: various R programming tools for plotting data. R package version 2.16.0. http://CRAN.R-project.org/package=gplots

  • Weissel N, Mitesser O, Poethke HJ, Strohm E (2012) Availability and depletion of fat reserves in halictid foundress queens with a focus on solitary nest founding. Insect Soc 59:67–74

    Article  Google Scholar 

  • Wilson EO (1971) The insect societies. Harvard University Press, Cambridge

    Google Scholar 

  • Wilson EO (1985) The sociogenesis of insect colonies. Science 228:1489–1495

    Article  CAS  PubMed  Google Scholar 

  • Wnuk A, Wiater A, Godzińska E (2011) Effect of past and present behavioural specialization on brain levels of biogenic amines in workers of the red wood ant Formica polyctena. Physiol Entomol 36:54–61

    Article  Google Scholar 

  • Zuur A, Ieno EN, Walker N, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgments

The study was supported by DFG (He 1623/33). We thank Bartosz Walter, Marion Füßl, Tina Wanke, Katrin Kellner, and Jon N. Seal for their help in collecting the ants, Bartosz Walter and Bert Rivera Marchand for their help with obtaining permits. Research in Puerto Rico was permitted by USDA Forest Service and Departamento de Recursos Naturales y Ambientales, 2012-IC-036.

We thank B. Markó and E. Csata for fruitful discussions on statistical analysis, O. Rueppell, T. Czaczkes, and two referees for constructive comments on previous versions of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abel Bernadou.

Additional information

Communicated by O. Rueppell

Appendices

Appendix 1

Table 1 Ethogram of P. punctata

Appendix 2

Fig. 5
figure 5

Mean location score (±IC95) for callow workers from 3 different colonies (PR9 = 8 callows, PR25 = 8 callows, and PR42 = 7 callows, one callow died during the first week of observation). Each ant was observed three times per day and 5 days per week during 6 weeks. At each observation, the ant’s location (inside = 0, nest entrance = 1 or outside the nest = 2) was scored. For clarity, only IC95 of colony PR42 are represented on the figure

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernadou, A., Busch, J. & Heinze, J. Diversity in identity: behavioral flexibility, dominance, and age polyethism in a clonal ant. Behav Ecol Sociobiol 69, 1365–1375 (2015). https://doi.org/10.1007/s00265-015-1950-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00265-015-1950-9

Keywords

Navigation