Skip to main content
Log in

Dual mobility cups provide biomechanical advantages in situations at risk for dislocation: a finite element analysis

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

Constrained devices, standard implants with large heads, and dual mobility systems have become popular options to manage instability after total hip arthroplasty (THA). Clinical results with these options have shown variable success rates and significant higher rates of aseptic loosening and mechanical failures with constrained implants. Literature suggests potential advantages of dual mobility, however little is known about its biomechanics. We present a comparative biomechanical study of a standard implant, a constrained implant, and a dual mobility system.

Methods

A finite element analysis was developed to assess and compare these acetabular options with regard to the range of motion (ROM) to impingement, the angle of dislocation, the resistive torque, the volume of polyethylene (PE) with a stress above 80% of the elastic limit, and the interfacial cup/bone stress.

Results

Dual mobility implants provided the greatest ROM to impingement and allowed delaying subluxation and dislocation when compared to standard and constrained implants. Dual mobility also demonstrated the lowest resistive torque at subluxation while the constrained implant provided the greatest one. The lowest critical PE volume was observed with the dual mobility implant, and the highest stress at the interfaces was observed with the constrained implant.

Conclusion

This study highlights the biomechanical advantages of dual mobility systems over constrained and standard implants, and is supported by the clinical results reported. Therefore, the use of dual mobility systems in situations at risk for instability should be advocated and constrained implants should be restricted to salvage situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Morrey BF (2004) Results of reoperation for hip dislocation: the big picture. Clin Orthop 94–101. doi: 10.1097/01.blo.0000150318.27723.8c

  2. Berry DJ (2001) Unstable total hip arthroplasty: detailed overview. Instr Course Lect 50:265–274

    CAS  PubMed  Google Scholar 

  3. Bartz RL, Noble PC, Kadakia NR, Tullos HS (2000) The effect of femoral component head size on posterior dislocation of the artificial hip joint. J Bone Joint Surg Am 82:1300–1307

    Article  CAS  PubMed  Google Scholar 

  4. Cooper HJ, Della V (2014) Large diameter femoral heads: is bigger always better? Bone Joint J 96B:23–26. doi:10.1302/0301-620X.96B11.34342

    Article  Google Scholar 

  5. Burroughs BR, Hallstrom B, Golladay GJ et al (2005) Range of motion and stability in total hip arthroplasty with 28-, 32-, 38-, and 44-mm femoral head sizes: An in vitro study. J Arthroplasty 20:11–19. doi:10.1016/j.arth.2004.07.008

    Article  PubMed  Google Scholar 

  6. Goetz DD, Capello WN, Callaghan JJ, et al (1998) Salvage of total hip instability with a constrained acetabular component. Clin Orthop 171–181

  7. Shapiro GS, Weiland DE, Markel DC et al (2003) The use of a constrained acetabular component for recurrent dislocation. J Arthroplasty 18:250–258. doi:10.1054/arth.2003.50090

    Article  PubMed  Google Scholar 

  8. Guyen O, Lewallen DG, Cabanela ME (2008) Modes of failure of Osteonics constrained tripolar implants: a retrospective analysis of forty-three failed implants. J Bone Joint Surg Am 90:1553–60. doi:10.2106/JBJS.G.00317

    Article  PubMed  Google Scholar 

  9. Guyen O, Pibarot V, Vaz G et al (2007) Unconstrained tripolar implants for primary total hip arthroplasty in patients at risk for dislocation. J Arthroplasty 22:849–58. doi:10.1016/j.arth.2006.11.014

    Article  PubMed  Google Scholar 

  10. Guyen O, Pibarot V, Vaz G et al (2009) Use of a dual mobility socket to manage total hip arthroplasty instability. Clin Orthop Relat Res 467:465–72. doi:10.1007/s11999-008-0476-0

    Article  PubMed  Google Scholar 

  11. Vasukutty NL, Middleton RG, Young P et al (2014) A double mobility acetabular implant for primary hip arthroplasty in patients at high risk of dislocation. Ann R Coll Surg Engl 96:597–601. doi:10.1308/003588414X14055925058391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vigdorchik JM, D’Apuzzo MR, Markel DC et al (2015) Lack of early dislocation following total hip arthroplasty with a new dual mobility acetabular design. Hip Int 25:34–38. doi:10.5301/hipint.5000186

    Article  PubMed  Google Scholar 

  13. Vasukutty NL, Middleton RG, Matthews EC et al (2012) The double-mobility acetabular component in revision total hip replacement. J Bone Joint Surg Br 94(B):603–608. doi:10.1302/0301-620X.94B5.27876

    Article  CAS  PubMed  Google Scholar 

  14. Bensen AS, Jakobsen T, Krarup N (2014) Dual mobility cup reduces dislocation and re-operation when used to treat displaced femoral neck fractures. Int Orthop 38:1241–1245. doi:10.1007/s00264-013-2276-8

    Article  PubMed  PubMed Central  Google Scholar 

  15. van Heumen M, Heesterbeek PJC, Swierstra BA et al (2015) Dual mobility acetabular component in revision total hip arthroplasty for persistent dislocation: no dislocations in 50 hips after 1–5 years. J Orthop Traumatol 16:15–20. doi:10.1007/s10195-014-0318-7

    Article  PubMed  Google Scholar 

  16. Rüdiger HA, Parvex V, Terrier A (2016) Impact of the femoral head position on moment arms in total hip arthroplasty: a parametric finite element study. J Arthroplasty 31:715–720. doi:10.1016/j.arth.2015.09.044

    Article  PubMed  Google Scholar 

  17. Terrier A, Levrero Florencio F, Rudiger HA (2014) Benefit of cup medialization in total hip arthroplasty is associated with femoral anatomy. Clin Orthop Relat Res 472:3159–65. doi:10.1007/s11999-014-3787-3

    Article  PubMed  PubMed Central  Google Scholar 

  18. Terrier A, Parvex V, Rüdiger HA (2016) Impact of individual anatomy on the benefit of cup medialisation in total hip arthroplasty. Hip Int 26:537–542. doi:10.5301/hipint.5000392

    Article  PubMed  Google Scholar 

  19. Wu G, Siegler S, Allard P et al (2002) ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—part 1: ankle, hip, and spine. J Biomech 35:543–548

    Article  PubMed  Google Scholar 

  20. Pruitt LA (2005) Deformation, yielding, fracture and fatigue behavior of conventional and highly cross-linked ultra high molecular weight polyethylene. Biomaterials 26:905–15. doi:10.1016/j.biomaterials.2004.03.022

    Article  CAS  PubMed  Google Scholar 

  21. Teoh SH, Chan WH, Thampuran R (2002) An elasto-plastic finite element model for polyethylene wear in total hip arthroplasty. J Biomech 35:323–30

    Article  CAS  PubMed  Google Scholar 

  22. Keller TS (1994) Predicting the compressive mechanical behavior of bone. J Biomech 27:1159–68

    Article  CAS  PubMed  Google Scholar 

  23. Saikko VO (1996) A three-axis hip joint simulator for wear and friction studies on total hip prostheses. Proc Inst Mech Eng H 210:175–85

    Article  CAS  PubMed  Google Scholar 

  24. Combes A, Migaud H, Girard J et al (2013) Low rate of dislocation of dual-mobility cups in primary total hip arthroplasty. Clin Orthop 471:3891–3900. doi:10.1007/s11999-013-2929-3

    Article  PubMed  PubMed Central  Google Scholar 

  25. Shrader MW, Parvizi J, Lewallen DG (2003) The use of a constrained acetabular component to treat instability after total hip arthroplasty. J Bone Joint Surg Am 85:2179–2183

    Article  PubMed  Google Scholar 

  26. Lombardi J, Skeels MD, Berend KR et al (2011) Do large heads enhance stability and restore native anatomy in primary total hip arthroplasty? Clin Orthop 469:1547–1553. doi:10.1007/s11999-010-1605-0

    Article  PubMed  Google Scholar 

  27. Muratoglu OK, Bragdon CR, O’Connor D et al (2001) Larger diameter femoral heads used in conjunction with a highly cross-linked ultra-high molecular weight polyethylene: a new concept. J Arthroplasty 16:24–30. doi:10.1054/arth.2001.28376

    Article  CAS  PubMed  Google Scholar 

  28. Blumenfeld TJ, McKellop HA, Schmalzried TP, Billi F (2011) Fracture of a cross-linked polyethylene liner. A multifactorial issue. J Arthroplasty 26:666. doi:10.1016/j.arth.2010.07.009, e5–666.e8

    Article  PubMed  Google Scholar 

  29. Guyen O, Chen QS, Bejui-Hugues J et al (2007) Unconstrained tripolar hip implants: effect on hip stability. Clin Orthop Relat Res 455:202–8. doi:10.1097/01.blo.0000238796.59596.1f

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Guyen.

Ethics declarations

Conflict of interest statement

This study was funded by internal sources. The funding source did not play a role in the investigation.

Ethical review committee statement

Included.

Location where the work was performed

The study was performed at the Ecole Polytechnique Fédérale de Lausanne (EPFL) and the Centre Hospitalier Universitaire Vaudois (CHUV) in Lausanne/Switzerland.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terrier, A., Latypova, A., Guillemin, M. et al. Dual mobility cups provide biomechanical advantages in situations at risk for dislocation: a finite element analysis. International Orthopaedics (SICOT) 41, 551–556 (2017). https://doi.org/10.1007/s00264-016-3368-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-016-3368-z

Keywords

Navigation