Skip to main content

Advertisement

Log in

The administration of drugs inhibiting cholesterol/oxysterol synthesis is safe and increases the efficacy of immunotherapeutic regimens in tumor-bearing mice

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Tumor-derived metabolites dampen tumor-infiltrating immune cells and antitumor immune responses. Among the various metabolites produced by tumors, we recently showed that cholesterol oxidized products, namely oxysterols, favor tumor growth through the inhibition of DC migration toward lymphoid organs and by promoting the recruitment of pro-tumor neutrophils within the tumor microenvironment. Here, we tested different drugs capable of blocking cholesterol/oxysterol formation. In particular, we tested efficacy and safety of different administration schedules, and of immunotherapy-based combination of a class of compounds, namely zaragozic acids, which inhibit cholesterol pathway downstream of mevalonate formation, thus leaving intact the formation of the isoprenoids, which are required for the maturation of proteins involved in the immune cell function. We show that zaragozic acids inhibit the in vivo growth of the RMA lymphoma and the Lewis lung carcinoma (LLC) without inducing side effects. Tumor growth inhibition requires an intact immune system, as immunodeficient tumor-bearing mice do not respond to zaragozic acid treatment. Of note, the effect of zaragozic acids is accompanied by a marked reduction in the LXR target genes Abcg1, Mertk, Scd1 and Srebp-1c in the tumor microenvironment. On the other hand, zoledronate, which blocks also isoprenoid formation, did not control the LLC tumor growth. Finally, we show that zaragozic acids potentiate the antitumor effects of active and adoptive immunotherapy, significantly prolonging the overall survival of tumor-bearing mice treated with the combo zaragozic acids and TAA-loaded DCs. This study identifies zaragozic acids as new antitumor compounds exploitable for the treatment of cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ABCG1:

ATP-binding cassette G1

ΔLNGFr:

Low-affinity nerve growth factor receptor

HMG-CoA:

Hydroxymethylglutaryl-coenzyme A reductase

LXR:

Liver X receptor

MERTK:

MER poroto-oncogene tyrosine kinase

MMP-9:

Matrix metalloproteinase 9

MUT-1:

Mutated connexin 37 gap-junction protein-derived peptide

OVA-CSM:

OVA-cell surface marker

SCD1:

Stearoyl-CoA desaturase-1

SEM:

Standard error of mean

SREBP:

Sterol response element binding protein

VEGF:

Vascular endothelial growth factor

ZA:

Zaragozic acid(s)

ZO:

Zoledronate

VAX:

Vaccination

References

  1. Zitvogel L, Tesniere A, Kroemer G (2006) Cancer despite immunosurveillance: immunoselection and immunosubversion. Nat Rev Immunol 6(10):715–727

    Article  CAS  PubMed  Google Scholar 

  2. Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454(7203):436–444

    Article  CAS  PubMed  Google Scholar 

  3. Coussens LM, Zitvogel L, Palucka AK (2013) Neutralizing tumor-promoting chronic inflammation: a magic bullet? Science 339(6117):286–291. doi:10.1126/science.1232227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Coffelt SB, de Visser KE (2015) Immune-mediated mechanisms influencing the efficacy of anticancer therapies. Trends Immunol 36(4):198–216. doi:10.1016/j.it.2015.02.006

    Article  CAS  PubMed  Google Scholar 

  5. Vesely MD, Kershaw MH, Schreiber RD, Smyth MJ (2011) Natural innate and adaptive immunity to cancer. Annu Rev Immunol 29:235–271. doi:10.1146/annurev-immunol-031210-101324

    Article  CAS  PubMed  Google Scholar 

  6. Villalba M, Rathore MG, Lopez-Royuela N, Krzywinska E, Garaude J, Allende-Vega N (2013) From tumor cell metabolism to tumor immune escape. Int J Biochem Cell Biol 45(1):106–113. doi:10.1016/j.biocel.2012.04.024

    Article  CAS  PubMed  Google Scholar 

  7. Raccosta L, Fontana R, Corna G, Maggioni D, Moresco M, Russo V (2016) Cholesterol metabolites and tumor microenvironment: the road towards clinical translation. Cancer Immunol Immunother 65(1):111–117. doi:10.1007/s00262-015-1779-0

    Article  CAS  PubMed  Google Scholar 

  8. Bronte V, Zanovello P (2005) Regulation of immune responses by l-arginine metabolism. Nat Rev Immunol 5(8):641–654

    Article  CAS  PubMed  Google Scholar 

  9. Grohmann U, Bronte V (2010) Control of immune response by amino acid metabolism. Immunol Rev 236:243–264. doi:10.1111/j.1600-065X.2010.00915.x

    Article  CAS  PubMed  Google Scholar 

  10. Munn DH, Mellor AL (2016) IDO in the tumor microenvironment: inflammation, counter-regulation, and tolerance. Trends Immunol 37(3):193–207. doi:10.1016/j.it.2016.01.002

    Article  CAS  PubMed  Google Scholar 

  11. Traversari C, Russo V (2012) Control of the immune system by oxysterols and cancer development. Curr Opin Pharmacol 12(6):729–735. doi:10.1016/j.coph.2012.07.003

    Article  CAS  PubMed  Google Scholar 

  12. Russell DW (2000) Oxysterol biosynthetic enzymes. Biochim Biophys Acta 1529(1–3):126–135

    Article  CAS  PubMed  Google Scholar 

  13. Herber DL, Cao W, Nefedova Y, Novitskiy SV, Nagaraj S, Tyurin VA, Corzo A, Cho HI, Celis E, Lennox B, Knight SC, Padhya T, McCaffrey TV, McCaffrey JC, Antonia S, Fishman M, Ferris RL, Kagan VE, Gabrilovich DI (2010) Lipid accumulation and dendritic cell dysfunction in cancer. Nat Med 16(8):880–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Raccosta L, Fontana R, Maggioni D, Lanterna C, Villablanca EJ, Paniccia A, Musumeci A, Chiricozzi E, Trincavelli ML, Daniele S, Martini C, Gustafsson JA, Doglioni C, Feo SG, Leiva A, Ciampa MG, Mauri L, Sensi C, Prinetti A, Eberini I, Mora JR, Bordignon C, Steffensen KR, Sonnino S, Sozzani S, Traversari C, Russo V (2013) The oxysterol-CXCR2 axis plays a key role in the recruitment of tumor-promoting neutrophils. J Exp Med 210(9):1711–1728. doi:10.1084/jem.20130440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Repa JJ, Mangelsdorf DJ (2000) The role of orphan nuclear receptors in the regulation of cholesterol homeostasis. Annu Rev Cell Dev Biol 16:459–481

    Article  CAS  PubMed  Google Scholar 

  16. Villablanca EJ, Raccosta L, Zhou D, Fontana R, Maggioni D, Negro A, Sanvito F, Ponzoni M, Valentinis B, Bregni M, Prinetti A, Steffensen KR, Sonnino S, Gustafsson JA, Doglioni C, Bordignon C, Traversari C, Russo V (2010) Tumor-mediated liver X receptor-alpha activation inhibits CC chemokine receptor-7 expression on dendritic cells and dampens antitumor responses. Nat Med 16(1):98–105

    Article  CAS  PubMed  Google Scholar 

  17. Traversari C, Sozzani S, Steffensen KR, Russo V (2014) LXR-dependent and -independent effects of oxysterols on immunity and tumor growth. Eur J Immunol 44(7):1896–1903. doi:10.1002/eji.201344292

    Article  CAS  PubMed  Google Scholar 

  18. Goldstein JL, Brown MS (2015) A century of cholesterol and coronaries: from plaques to genes to statins. Cell 161(1):161–172. doi:10.1016/j.cell.2015.01.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Grundy SM (1988) HMG-CoA reductase inhibitors for treatment of hypercholesterolemia. New Engl J Med 319(1):24–33. doi:10.1056/NEJM198807073190105

    Article  CAS  PubMed  Google Scholar 

  20. Massy ZA, Keane WF, Kasiske BL (1996) Inhibition of the mevalonate pathway: benefits beyond cholesterol reduction? Lancet 347(8994):102–103

    Article  CAS  PubMed  Google Scholar 

  21. Sassano A, Platanias LC (2008) Statins in tumor suppression. Cancer Lett 260(1–2):11–19. doi:10.1016/j.canlet.2007.11.036

    Article  CAS  PubMed  Google Scholar 

  22. Gbelcova H, Lenicek M, Zelenka J, Knejzlik Z, Dvorakova G, Zadinova M, Pouckova P, Kudla M, Balaz P, Ruml T, Vitek L (2008) Differences in antitumor effects of various statins on human pancreatic cancer. Int J Cancer 122(6):1214–1221. doi:10.1002/ijc.23242

    Article  CAS  PubMed  Google Scholar 

  23. Hindler K, Cleeland CS, Rivera E, Collard CD (2006) The role of statins in cancer therapy. Oncologist 11(3):306–315. doi:10.1634/theoncologist.11-3-306

    Article  CAS  PubMed  Google Scholar 

  24. Nielsen SF, Nordestgaard BG, Bojesen SE (2012) Statin use and reduced cancer-related mortality. New Engl J Med 367(19):1792–1802. doi:10.1056/NEJMoa1201735

    Article  CAS  PubMed  Google Scholar 

  25. Freeman SR, Drake AL, Heilig LF, Graber M, McNealy K, Schilling LM, Dellavalle RP (2006) Statins, fibrates, and melanoma risk: a systematic review and meta-analysis. J Natl Cancer Inst 98(21):1538–1546. doi:10.1093/jnci/djj412

    Article  CAS  PubMed  Google Scholar 

  26. Youssef S, Stuve O, Patarroyo JC, Ruiz PJ, Radosevich JL, Hur EM, Bravo M, Mitchell DJ, Sobel RA, Steinman L, Zamvil SS (2002) The HMG-CoA reductase inhibitor, atorvastatin, promotes a Th2 bias and reverses paralysis in central nervous system autoimmune disease. Nature 420(6911):78–84

    Article  CAS  PubMed  Google Scholar 

  27. Zhang FL, Casey PJ (1996) Protein prenylation: molecular mechanisms and functional consequences. Annu Rev Biochem 65:241–269. doi:10.1146/annurev.bi.65.070196.001325

    Article  CAS  PubMed  Google Scholar 

  28. McTaggart SJ (2006) Isoprenylated proteins. Cell Mol Life Sci 63(3):255–267. doi:10.1007/s00018-005-5298-6

    Article  CAS  PubMed  Google Scholar 

  29. Berndt N, Hamilton AD, Sebti SM (2011) Targeting protein prenylation for cancer therapy. Nat Rev Cancer 11(11):775–791. doi:10.1038/nrc3151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Resh MD (2012) Targeting protein lipidation in disease. Trends Mol Med 18(4):206–214. doi:10.1016/j.molmed.2012.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Greenwood J, Steinman L, Zamvil SS (2006) Statin therapy and autoimmune disease: from protein prenylation to immunomodulation. Nat Rev Immunol 6(5):358–370

    Article  CAS  PubMed  Google Scholar 

  32. Lipton A (2011) Zoledronic acid: multiplicity of use across the cancer continuum. Expert Rev Anticancer Ther 11(7):999–1012. doi:10.1586/era.11.71

    Article  CAS  PubMed  Google Scholar 

  33. Coleman R, Cook R, Hirsh V, Major P, Lipton A (2011) Zoledronic acid use in cancer patients: more than just supportive care? Cancer 117(1):11–23

    Article  CAS  PubMed  Google Scholar 

  34. Bergstrom JD, Kurtz MM, Rew DJ, Amend AM, Karkas JD, Bostedor RG, Bansal VS, Dufresne C, VanMiddlesworth FL, Hensens OD et al (1993) Zaragozic acids: a family of fungal metabolites that are picomolar competitive inhibitors of squalene synthase. Proc Natl Acad Sci USA 90(1):80–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bergstrom JD, Dufresne C, Bills GF, Nallin-Omstead M, Byrne K (1995) Discovery, biosynthesis, and mechanism of action of the Zaragozic acids: potent inhibitors of squalene synthase. Annu Rev Microbiol 49:607–639. doi:10.1146/annurev.mi.49.100195.003135

    Article  CAS  PubMed  Google Scholar 

  36. Hogquist KA, Jameson SC, Heath WR, Howard JL, Bevan MJ, Carbone FR (1994) T cell receptor antagonist peptides induce positive selection. Cell 76(1):17–27

    Article  CAS  PubMed  Google Scholar 

  37. Russo V, Cipponi A, Raccosta L, Rainelli C, Fontana R, Maggioni D, Lunghi F, Mukenge S, Ciceri F, Bregni M, Bordignon C, Traversari C (2007) Lymphocytes genetically modified to express tumor antigens target DCs in vivo and induce antitumor immunity. J Clin Invest 117(10):3087–3096. doi:10.1172/JCI30605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mandelboim O, Bar-Haim E, Vadai E, Fridkin M, Eisenbach L (1997) Identification of shared tumor-associated antigen peptides between two spontaneous lung carcinomas. J Immunol 159(12):6030–6036

    CAS  PubMed  Google Scholar 

  39. Melani C, Sangaletti S, Barazzetta FM, Werb Z, Colombo MP (2007) Amino-biphosphonate-mediated MMP-9 inhibition breaks the tumor-bone marrow axis responsible for myeloid-derived suppressor cell expansion and macrophage infiltration in tumor stroma. Cancer Res 67(23):11438–11446. doi:10.1158/0008-5472.CAN-07-1882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mandelboim O, Vadai E, Fridkin M, Katz-Hillel A, Feldman M, Berke G, Eisenbach L (1995) Regression of established murine carcinoma metastases following vaccination with tumour-associated antigen peptides. Nat Med 1(11):1179–1183

    Article  CAS  PubMed  Google Scholar 

  41. June CH (2007) Adoptive T cell therapy for cancer in the clinic. J Clin Invest 117(6):1466–1476. doi:10.1172/JCI32446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dunn SE, Youssef S, Goldstein MJ, Prod’homme T, Weber MS, Zamvil SS, Steinman L (2006) Isoprenoids determine Th1/Th2 fate in pathogenic T cells, providing a mechanism of modulation of autoimmunity by atorvastatin. J Exp Med 203(2):401–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bovenga F, Sabba C, Moschetta A (2015) Uncoupling nuclear receptor LXR and cholesterol metabolism in cancer. Cell Metab 21(4):517–526. doi:10.1016/j.cmet.2015.03.002

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Italian Association for Cancer Research (AIRC) and the Italian Ministry of Health (RF2009). C. Bordignon and C. Traversari are employees of Molmed S.p.A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Russo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 404 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lanterna, C., Musumeci, A., Raccosta, L. et al. The administration of drugs inhibiting cholesterol/oxysterol synthesis is safe and increases the efficacy of immunotherapeutic regimens in tumor-bearing mice. Cancer Immunol Immunother 65, 1303–1315 (2016). https://doi.org/10.1007/s00262-016-1884-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-016-1884-8

Keywords

Navigation