Skip to main content
Log in

Activation of CD1d-restricted natural killer T cells can inhibit cancer cell proliferation during chemotherapy by promoting the immune responses in murine mesothelioma

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

We studied the impact of natural killer T (NKT) cell activation by alpha-galactocysylceramide (α-GalCer, α-GC) on cancer cell repopulation during chemotherapy in murine mesothelioma. The number of NKT cells was found to be increased during the development of murine mesothelioma. NKT cells specifically recognize α-GC through CD1d resulting in their activation and expansion. Tumor-bearing mice were treated with chemotherapy once weekly, and α-GC was followed after each cycle of chemotherapy. Anti-tumor effect was evaluated on wild-type (WT) and CD1d knockout (CD1dKO) mice. Cancer cell proliferation and apoptosis were evaluated by Ki67 and TUNEL immunohistochemistry. CD4+ and CD8+ T cell proportion and activation in tumor, spleen, draining lymph node and peripheral blood were determined by flow cytometry, and gene expression of activated T cell-related cytokines was quantified by reverse transcription PCR. NKT cells were identified by CD1d-α-GC-tetramer staining. In WT mice, tumor growth delay was achieved by cisplatin (Cis), and this effect was improved in combination with α-GC, but α-GC alone had little effect. Cancer cell proliferation during chemotherapy was significantly inhibited by α-GC, while cancer cell death was significantly upregulated. α-GC following chemotherapy resulted in NKT cell expansion and an increase of interferon-γ production in the draining lymph node, blood and spleen. Gene expression of immune-associated cytokines was upregulated. Strikingly, the percentage of inducible T cell co-stimulator+CD4 T cells, Th17/Tc17 cells increased in splenocytes. In CD1d KO mice, however, Cis alone was less effective and Cis + α-GC provided no additional benefit over Cis alone. α-GC alone had minimal effect in both mice. NKT activation between cycles of chemotherapy could improve the outcome of mesothelioma treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

α-GC:

α-GalCer, alpha-galactocysylceramide

APC:

Antigen-presenting cell

Cis:

Cisplatin

DC:

Dendritic cell

ICOS:

Inducible T cell co-stimulator

IFN:

Interferon

KO:

Knockout

MPM:

Malignant pleural mesothelioma

NKT:

Natural killer T cell

sc:

Subcutaneously

WT:

Wild type

References

  1. Kreso A, O’Brien CA, van Galen P, Gan OI, Notta F, Brown AM et al (2013) Variable clonal repopulation dynamics influence chemotherapy response in colorectal cancer. Science 339:543–548

    Article  CAS  PubMed  Google Scholar 

  2. Telleria CM (2013) Repopulation of ovarian cancer cells after chemotherapy. Cancer Growth Metastasis 6:15–21

    Article  PubMed Central  PubMed  Google Scholar 

  3. Kim JJ, Tannock IF (2005) Repopulation of cancer cells during therapy: an important cause of treatment failure. Nat Rev Cancer 5:516–525

    Article  CAS  PubMed  Google Scholar 

  4. Gamarra-Luques CD, Goyeneche AA, Hapon MB, Telleria CM (2012) Mifepristone prevents repopulation of ovarian cancer cells escaping cisplatin–paclitaxel therapy. BMC Cancer 12:200

    Article  CAS  PubMed  Google Scholar 

  5. Wu L, Birle DC, Tannock IF (2005) Effects of the mammalian target of rapamycin inhibitor CCI-779 used alone or with chemotherapy on human prostate cancer cells and xenografts. Cancer Res 65:2825–2831

    Article  CAS  PubMed  Google Scholar 

  6. Wu L, Yun Z, Tagawa T, Rey-McIntyre K, de Perrot M (2012) CTLA-4 blockade expands infiltrating T cells and inhibits cancer cell repopulation during the intervals of chemotherapy in murine mesothelioma. Mol Cancer Ther 11:1809–1819

    Article  CAS  PubMed  Google Scholar 

  7. Stayner L, Welch LS, Lemen R (2013) The worldwide pandemic of asbestos-related diseases. Annu Rev Public Health 34:205–216

    Article  PubMed  Google Scholar 

  8. Vogelzang NJ, Rusthoven JJ, Symanowski J, Denham C, Kaukel E, Ruffie P et al (2003) Phase III study of pemetrexed in combination with cisplatin versus cisplatin alone in patients with malignant pleural mesothelioma. J Clin Oncol 21:2636–2644

    Article  CAS  PubMed  Google Scholar 

  9. de Perrot M, Feld R, Cho BC, Bezjak A, Anraku M, Burkes R et al (2009) Trimodality therapy with induction chemotherapy followed by extrapleural pneumonectomy and adjuvant high-dose hemithoracic radiation for malignant pleural mesothelioma. J Clin Oncol 27:1413–1418

    Article  PubMed  Google Scholar 

  10. Pasello G, Ceresoli GL, Favaretto A (2013) An overview of neoadjuvant chemotherapy in the multimodality treatment of malignant pleural mesothelioma. Cancer Treat Rev 39:10–17

    Article  CAS  PubMed  Google Scholar 

  11. Metelitsa LS, Naidenko OV, Kant A, Wu HW, Loza MJ, Perussia B et al (2001) Human NKT cells mediate antitumor cytotoxicity directly by recognizing target cell CD1d with bound ligand or indirectly by producing IL-2 to activate NK cells. J Immunol 167:3114–3122

    Article  CAS  PubMed  Google Scholar 

  12. Tagawa T, Wu L, Anraku M, Yun Z, Rey-McIntyre K, de Perrot M (2013) Antitumor impact of interferon-gamma producing CD1d-restricted NKT cells in murine malignant mesothelioma. J Immunother 36:391–399

    Article  CAS  PubMed  Google Scholar 

  13. Chang DH, Osman K, Connolly J, Kukreja A, Krasovsky J, Pack M et al (2005) Sustained expansion of NKT cells and antigen-specific T cells after injection of alpha-galactosyl-ceramide loaded mature dendritic cells in cancer patients. J Exp Med 201:1503–1517

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Ishikawa A, Motohashi S, Ishikawa E, Fuchida H, Higashino K, Otsuji M et al (2005) A phase I study of alpha-galactosylceramide (KRN7000)-pulsed dendritic cells in patients with advanced and recurrent non-small cell lung cancer. Clin Cancer Res 11:1910–1917

    Article  CAS  PubMed  Google Scholar 

  15. Godfrey DI, Stankovic S, Baxter AG (2010) Raising the NKT cell family. Nat Immunol 11:197–206

    Article  CAS  PubMed  Google Scholar 

  16. Kitamura H, Iwakabe K, Yahata T, Nishimura S, Ohta A, Ohmi Y et al (1999) The natural killer T (NKT) cell ligand alpha-galactosylceramide demonstrates its immunopotentiating effect by inducing interleukin (IL)-12 production by dendritic cells and IL-12 receptor expression on NKT cells. J Exp Med 189:1121–1128

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Carnaud C, Gombert J, Donnars O, Garchon H, Herbelin A (2001) Protection against diabetes and improved NK/NKT cell performance in NOD.NK1.1 mice congenic at the NK complex. J Immunol 166:2404–2411

    Article  CAS  PubMed  Google Scholar 

  18. Nakagawa R, Nagafune I, Tazunoki Y, Ehara H, Tomura H, Iijima R et al (2001) Mechanisms of the antimetastatic effect in the liver and of the hepatocyte injury induced by alpha-galactosylceramide in mice. J Immunol 166:6578–6584

    Article  CAS  PubMed  Google Scholar 

  19. Tonti E, Galli G, Malzone C, Abrignani S, Casorati G, Dellabona P (2009) NKT-cell help to B lymphocytes can occur independently of cognate interaction. Blood 113:370–376

    Article  CAS  PubMed  Google Scholar 

  20. Leadbetter EA, Brigl M, Illarionov P, Cohen N, Luteran MC, Pillai S et al (2008) NK T cells provide lipid antigen-specific cognate help for B cells. Proc Natl Acad Sci USA 105:8339–8344

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Schneiders FL, Scheper RJ, von Blomberg BM, Woltman AM, Janssen HL, van den Eertwegh AJ et al (2011) Clinical experience with alpha-galactosylceramide (KRN7000) in patients with advanced cancer and chronic hepatitis B/C infection. Clin Immunol 140:130–141

    Article  CAS  PubMed  Google Scholar 

  22. Motohashi S, Okamoto Y, Yoshino I, Nakayama T (2011) Anti-tumor immune responses induced by iNKT cell-based immunotherapy for lung cancer and head and neck cancer. Clin Immunol 140:167–176

    Article  CAS  PubMed  Google Scholar 

  23. Wu L, Yun Z, Tagawa T, Rey-McIntyre K, Anraku M, de Perrot M (2011) Tumor cell repopulation between cycles of chemotherapy is inhibited by regulatory T-cell depletion in a murine mesothelioma model. J Thorac Oncol 6:1578–1586

    Article  PubMed  Google Scholar 

  24. Barbieri PG, Marinaccio A, Ferrante P, Scarselli A, Pinelli V, Tassi G (2012) Effects of combined therapies on the survival of pleural mesothelioma patients treated in Brescia, 1982–2006. Tumori 98:215–219

    PubMed  Google Scholar 

  25. Kelly RJ, Sharon E, Hassan R (2011) Chemotherapy and targeted therapies for unresectable malignant mesothelioma. Lung Cancer 73:256–263

    Article  PubMed Central  PubMed  Google Scholar 

  26. Zhao Y, Moon E, Carpenito C, Paulos CM, Liu X, Brennan AL et al (2010) Multiple injections of electroporated autologous T cells expressing a chimeric antigen receptor mediate regression of human disseminated tumor. Cancer Res 70:9053–9061

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Richter J, Neparidze N, Zhang L, Nair S, Monesmith T, Sundaram R et al (2013) Clinical regressions and broad immune activation following combination therapy targeting human NKT cells in myeloma. Blood 121:423–430

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Nicol AJ, Tazbirkova A, Nieda M (2011) Comparison of clinical and immunological effects of intravenous and intradermal administration of alpha-galactosylceramide (KRN7000)-pulsed dendritic cells. Clin Cancer Res 17:5140–5151

    Article  CAS  PubMed  Google Scholar 

  29. Yamasaki K, Horiguchi S, Kurosaki M, Kunii N, Nagato K, Hanaoka H et al (2011) Induction of NKT cell-specific immune responses in cancer tissues after NKT cell-targeted adoptive immunotherapy. Clin Immunol 138:255–265

    Article  CAS  PubMed  Google Scholar 

  30. Peng Y, Zhao L, Shekhar S, Liu L, Wang H, Chen Q et al (2012) The glycolipid exoantigen derived from Chlamydia muridarum activates invariant natural killer T cells. Cell Mol Immunol 9:361–366

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Jahn T, Zuther M, Friedrichs B, Heuser C, Guhlke S, Abken H et al (2012) An IL12-IL2-antibody fusion protein targeting Hodgkin’s lymphoma cells potentiates activation of NK and T cells for an anti-tumor attack. PLoS One 7:e44482

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Nakagawa R, Motoki K, Ueno H, Iijima R, Nakamura H, Kobayashi E et al (1998) Treatment of hepatic metastasis of the colon26 adenocarcinoma with an alpha-galactosylceramide, KRN7000. Cancer Res 58:1202–1207

    CAS  PubMed  Google Scholar 

  33. Crowe NY, Coquet JM, Berzins SP, Kyparissoudis K, Keating R, Pellicci DG et al (2005) Differential antitumor immunity mediated by NKT cell subsets in vivo. J Exp Med 202:1279–1288

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Sere K, Felker P, Hieronymus T, Zenke M (2013) TGFbeta1 microenvironment determines dendritic cell development. Oncoimmunology 2:e23083

    Article  PubMed Central  PubMed  Google Scholar 

  35. Donkor MK, Sarkar A, Savage PA, Franklin RA, Johnson LK, Jungbluth AA et al (2011) T cell surveillance of oncogene-induced prostate cancer is impeded by T cell-derived TGF-beta1 cytokine. Immunity 35:123–134

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Martin-Orozco N, Muranski P, Chung Y, Yang XO, Yamazaki T, Lu S et al (2009) T helper 17 cells promote cytotoxic T cell activation in tumor immunity. Immunity 31:787–798

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Prabhala RH, Pelluru D, Fulciniti M, Prabhala HK, Nanjappa P, Song W et al (2010) Elevated IL-17 produced by TH17 cells promotes myeloma cell growth and inhibits immune function in multiple myeloma. Blood 115:5385–5392

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Kryczek I, Banerjee M, Cheng P, Vatan L, Szeliga W, Wei S et al (2009) Phenotype, distribution, generation, and functional and clinical relevance of Th17 cells in the human tumor environments. Blood 114:1141–1149

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Yu Y, Cho HI, Wang D, Kaosaard K, Anasetti C, Celis E et al (2013) Adoptive transfer of Tc1 or Tc17 cells elicits antitumor immunity against established melanoma through distinct mechanisms. J Immunol 190:1873–1881

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Hamai A, Pignon P, Raimbaud I, Duperrier-Amouriaux K, Senellart H, Hiret S et al (2012) Human T(H)17 immune cells specific for the tumor antigen MAGE-A3 convert to IFN-gamma-secreting cells as they differentiate into effector T cells in vivo. Cancer Res 72:1059–1063

    Article  CAS  PubMed  Google Scholar 

  41. Caminschi I, Venetsanakos E, Leong CC, Garlepp MJ, Scott B, Robinson BW (1998) Interleukin-12 induces an effective antitumor response in malignant mesothelioma. Am J Respir Cell Mol Biol 19:738–746

    Article  CAS  PubMed  Google Scholar 

  42. Jackaman C, Nelson DJ (2010) Cytokine-armed vaccinia virus infects the mesothelioma tumor microenvironment to overcome immune tolerance and mediate tumor resolution. Cancer Gene Ther 17:429–440

    Article  CAS  PubMed  Google Scholar 

  43. Schmieg J, Yang G, Franck RW, Tsuji M (2003) Superior protection against malaria and melanoma metastases by a C-glycoside analogue of the natural killer T cell ligand alpha-Galactosylceramide. J Exp Med 198:1631–1641

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Brigl M, Tatituri RV, Watts GF, Bhowruth V, Leadbetter EA, Barton N et al (2011) Innate and cytokine-driven signals, rather than microbial antigens, dominate in natural killer T cell activation during microbial infection. J Exp Med 208:1163–1177

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Brennan PJ, Brigl M, Brenner MB (2013) Invariant natural killer T cells: an innate activation scheme linked to diverse effector functions. Nat Rev Immunol 13:101–117

    Article  CAS  PubMed  Google Scholar 

  46. Mattarollo SR, Smyth MJ (2013) NKT cell adjuvants in therapeutic vaccines against hematological cancers. Oncoimmunology 2:e22615

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partly supported by the Mesothelioma Foundation at Princess Margaret Hospital, Canada, and the research grant from the Mesothelioma Applied Research Foundation, USA. Dr. Marc de Perrot is the recipient of the grants and the Head of Toronto Mesothelioma Research Program, Canada. We would like to thank the Flow Cytometry Facility of the Hospital for Sick Children and Animal Resources Centre, University Health Network, Toronto, Canada.

Conflict of interest

No potential conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc de Perrot.

Additional information

Some preliminary results were presented at the 15th World Conference on Lung Cancer (WCLC2013), Sydney, Australia (abstract published in the Journal of Thoracic Oncology, Volume 8, Supplement 2, November 2013).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 384 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, L., Yun, Z., Tagawa, T. et al. Activation of CD1d-restricted natural killer T cells can inhibit cancer cell proliferation during chemotherapy by promoting the immune responses in murine mesothelioma. Cancer Immunol Immunother 63, 1285–1296 (2014). https://doi.org/10.1007/s00262-014-1597-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-014-1597-9

Keywords

Navigation