Skip to main content

Advertisement

Log in

The antitumor immune responses induced by nanoemulsion-encapsulated MAGE1-HSP70/SEA complex protein vaccine following peroral administration route

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Previous studies have shown that there are profuse lymphatic tissues under the intestinal mucous membrane. Moreover, vaccine administered orally can elicit both mucous membrane and system immune response simultaneously, accordingly induce tumor-specific cytotoxic T lymphocyte. As a result, the oral route is constituted the preferred immune route for vaccine delivery theoretically. However, numerous vaccines especially protein/peptide vaccines remain poorly available when administered by this route. Nanoemulsion has been shown as a useful vehicle can be developed to enhance the antitumor immune response against antigens encapsulated in it and it is good for the different administration routes. Of particular interest is whether the protein vaccine following peroral route using nanoemulsion as delivery carrier can induce the same, so much as stronger antitumor immune response to following conventional ways such as subcutaneous (sc.) or not. Hence, in the present study, we encapsulated the MAGE1-HSP70 and SEA complex protein in nanoemulsion as nanovaccine NE (MHS) using magnetic ultrasound method. We then immuned C57BL/6 mice with NE (MHS), MHS alone or NE (-) via po. or sc. route and detected the cellular immunocompetence by using ELISpot assay and LDH release assay. The therapeutic and tumor challenge assay were examined then. The results showed that compared with vaccination with MHS or NE (-), the cellular immune responses against MAGE-1 could be elicited fiercely by vaccination with NE (MHS) nanoemulsion. Furthermore, encapsulating MHS in nanoemulsion could delay tumor growth and defer tumor occurrence of mice challenged with B16-MAGE-1 tumor cells. Especially, the peroral administration of NE (MHS) could induce approximately similar antitumor immune responses to the sc. administration, but the MHS unencapsulated with nanoemulsion via po. could induce significantly weaker antitumor immune responses than that via sc., suggesting nanoemulsion as a promising carrier can exert potent antitumor immunity against antigen encapsulated in it and make the tumor protein vaccine immunizing via po. route feasible and effective. It may have a broad application in tumor protein vaccine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

APCs:

Antigen-presenting cells

CTL:

Cytotoxic T lymphocyte

HLA:

Human leukocyte antigen

HPLC:

High performance liquid chromatography

HSP:

Heat shock protein

IFN-γ:

Interferon-γ

MAGE:

Melanoma associated antigen

MHS:

MAGE1-HSP70/SEA complex protein

NE:

Nanoemulsion

NE (-):

Nanoemulsion-encaupulated nothing

NE (MHS):

Nanoemulsion-encaupsulated (MAGE1-HSP70/SEA complex protein)

po.:

Peroral

sc.:

Subcutaneous

SEA:

Staphylococcal enterotoxins A

TEM:

Transmission electron microscopy

TSA:

Tumor-specific antigen

References

  1. Alpar HO, Field WN, Hayes K, Lewis DA (1989) A possible use of orally administered microspheres in the treatment of inflammation. J Pharm Pharmacol 41(Suppl):50

    Google Scholar 

  2. Ammoury N, Fessi H, Devissaguet JP, Dubrasquet M, Benita S (1991) Jejunal absorption, pharmacological activity, and pharmacokinetic evaluation of indomethacin-loaded poly(d,l-lactide) and poly(isobutyl-cyanoacrylate) nanocapsules in rats. Pharm Res 8:101

    Article  PubMed  CAS  Google Scholar 

  3. Beck PH, Kreuter J, Müller WEG, Schatton W (1994) Improved peroral delivery of avarol with polyalkylcyanoacrylate nanoparticles. Eur J Pharm Biopharm 40:134

    CAS  Google Scholar 

  4. Bonduelle S, Carrier M, Pimienta C, Benoit JP, Lenaerts V (1996) Tissue concentration of nanoencapsulated radiolabelled cyclosporin following peroral delivery in mice or ophthalmic applications in rabbits. Eur J Pharm Biopharm 42:313

    Google Scholar 

  5. Challacombe SJ, Rahman D, O’Hagan DT (1997) Salivary, gut, vaginal and nasal antibody responses after oral immunization with biodegradable microparticles. Vaccine 15:169

    Article  PubMed  CAS  Google Scholar 

  6. Constantinides PP, Lancaster CM, Marcello J, Chiossone DC, Orner D, Hidalgo I, Smith PL, Sarkahian AB, Yiv SH, Owen AJ (1995) Enhanced intestinal absorption of an RGD peptide from water-in-oil microemulsions of different composition and particle size. J Control Rel 34:109

    Article  CAS  Google Scholar 

  7. Constantinides PP (1995) Lipid microemulsions for improving drug dissolution and oral absorption: physical and biopharmaceutical aspects. Pharm Res 12:1561

    Article  PubMed  CAS  Google Scholar 

  8. Constantinides PP, Scalart JP, Lancaster S, Marcello J, Marks G, Ellens H, Smith PL (1994) Formulation and intestinal absorption enhancement evaluation of water-in-oil microemulsions incorporating medium-chain glycerides. Pharm Res 11:1385

    Article  PubMed  CAS  Google Scholar 

  9. Damgé C, Aprahamian M, Balboni G, Hoeltzel A, Andrieu V, Devissaguet JP (1987) Polyalkylcyanoacrylate nanocapsules increase the intestinal absorption of a lipophilic drug. Int J Pharm 36:121

    Article  Google Scholar 

  10. Damgé C, Michel C, Aprahamian M, Couvreur P, Devissaguet JP (1990) Nanocapsules as carriers for oral peptide delivery. J Control Release 13:233

    Article  Google Scholar 

  11. Damgé C, Michel C, Aprahamian M, Couvreur P (1988) New approach for oral administration of insulin with polyalkylcyanoacrylate nanocapsules as drug carrier. Diabetes 37:246

    Article  PubMed  Google Scholar 

  12. Damgé C, Vonderscher J, Marbach P, Pinget M (1997) Poly(alkyl cyanoacrylate) nanocapsules as a delivery system in the rat for octreotide, a long-acting somatostatin analogue. J Pharm Pharmacol 49:949

    PubMed  Google Scholar 

  13. des Rieux A, Fievez V, Garinot M, YJs Schneider, Préat V (2006) Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J Control Release 116:1

    Article  PubMed  CAS  Google Scholar 

  14. Devissaguet JP, Fessi H, Ammoury N, Barratt G (1992) Colloidal drug delivery systems for gastrointestinal application, In: Junginger HE (eds) Drug Targeting and Delivery-Concepts in Dosage Form Design, Ellis Horwood, New York, 71

  15. Esparza I, Kissel T (1992) Parameters affecting the immunogenicity of microencapsulated tetanus toxoid. Vaccine 10:714

    Article  PubMed  CAS  Google Scholar 

  16. Fleischer B, Schrezenmeier H (1988) T cell stimulation by staphylococcal enterotoxins Clonally variable response and requirement for major histocompatibility complex class II molecules on accessory or target cells. J Exp Med 167:1697

    Article  PubMed  CAS  Google Scholar 

  17. Galindo-Rodriguez SA, Allemann E, Fessi H, Doelker E (2005) Polymeric nanoparticles for oral delivery of drugs and vaccines: a critical evaluation of in vivo studies. Crit Rev Ther Drug Carr Syst 22:419

    CAS  Google Scholar 

  18. Ge W, Sui YF, Wu DC, Sun YJ, Chen GS, Li ZS, Si SY, Hu PZ, Huang Y, Zhang XM (2006) MAGE-1/Heat shock protein 70/MAGE-3 fusion protein vaccine in nanoemulsion enhances cellular and humoral immune responses to MAGE-1 or MAGE-3 in vivo. Cancer Immunol Immunother 55:841

    Article  PubMed  Google Scholar 

  19. Hamman JH, Enslin GM, Kotzé AF (2005) Oral delivery of peptide drugs: barriers and developments. BioDrugs 19:165

    Article  PubMed  CAS  Google Scholar 

  20. Hubert B, Atkinson J, Guerret M, Hoffman M, Devissaguet JP, Maincent P (1991) The preparation and acute antihypertensive effects of a nanocapsular form of darodipine, a dihydropyridine calcium entry blocker. Pharm Res 8:734

    Article  PubMed  CAS  Google Scholar 

  21. Jores K, Mehnert W, Drechsler M, Bunjies H, Johann C, Mader K (2004) Investigations on the structure of solid lipid nanoparticles (SLN) and oil-loaded solid lipid nanoparticles by photon correlation spectroscopy, field-flow fractionation and transmission electron microscopy. J Control Release 95:217

    Article  PubMed  CAS  Google Scholar 

  22. Jung T, Kamm W, Breitenbach A, Hungerer KD, Hundt E, Kissel T (2001) Tetanus toxoid loaded nanoparticles from sulfobutylated poly(vinyl alcohol)-graft-poly(lactide-co-glycolide): evaluation of antibody response after oral and nasal application in mice. Pharm Res 18:352

    Article  PubMed  CAS  Google Scholar 

  23. Kim SY, Doh HJ, Jang MH, Ha YJ, Chung SI, Park HJ (1999) Oral immunization with Helicobacter pylori-loaded poly(d, l-lactide-co-glycolide) nanoparticles. Helicobacter 4:33

    Article  PubMed  CAS  Google Scholar 

  24. Maincent P, Le Verge R, Sado P, Couvreur P, Devissaguet JP (1986) Deposition kinetics and oral bioavailability of vincamine-loaded polyalkyl cyanoacrylate nanoparticles. J Pharm Sci 75:955

    Article  PubMed  CAS  Google Scholar 

  25. Ma JH, Sui YF, Ye J, Huang Ya-Yu, Li Zeng-Shan, Chen Guang-Sheng, Qu Ping, Song Hong-Ping, Zhang Xiu-Min (2005) Heat shock protein 70/MAGE-3 fusion protein vaccine can enhance cellular and humoral immune responses to MAGE-3 in vivo. Cancer Immunol Immunother 54:907

    Article  PubMed  CAS  Google Scholar 

  26. Maloy KJ, Donachie AM, O’Hagan DT, Mowat AM (1994) Induction of mucosal and systemic immune responses by immunization with ovalbumin entrapped in poly(lactide-co-glycolide) microparticles. Immunology 81:661

    PubMed  CAS  Google Scholar 

  27. Mathiowitz E, Jacob JS, Jong YS, Carino GP, Chickering DE, Chaturvedi P, Santos CA, Vijayaraghavan K, Montgomery S, Bassett M, Morell C (1997) Biologically erodible microspheres as potential oral drug delivery systems. Nature 386:410

    Article  PubMed  CAS  Google Scholar 

  28. Melief CJ, Kast WM (1995) T-cell immunotherapy of tumors by adoptive transfer of cytotoxic T lymphocytes and by vaccination with minimal essential epitopes. Immunol Rev 145:167

    Article  PubMed  CAS  Google Scholar 

  29. Mutwiri G, Bowersock TL, Babiuk LA (2005) Microparticles for oral delivery of vaccines. Expert Opin Drug Del 2:791

    Article  CAS  Google Scholar 

  30. Niidome T, Huang L (2002) Gene therapy progress and prospects: nonviral vectors. Gene Ther 9:1647

    Article  PubMed  CAS  Google Scholar 

  31. O’Hagan DT (1990) Intestinal translocation of particulates—implications for drug and antigen delivery. Adv Drug Del Rev 5:265

    Article  CAS  Google Scholar 

  32. Ottenbrite R, Zhao R, Milstein S (1996) A new oral microsphere drug delivery system. Macromol Symp 101:379

    CAS  Google Scholar 

  33. Pappo J, Ermak TH (1989) Uptake and translocation of fluorescent latex particles by rabbit Peyer’s patch follicle epithelium: a quantitative model for M cell uptake. Clin Exp Immunol 76:144

    PubMed  CAS  Google Scholar 

  34. Ponchel G, Irache JM (1998) Specific and non-specific bioadhesive particulate systems for oral delivery to the gastrointestinal tract. Adv Drug Del Rev 34:191

    Article  CAS  Google Scholar 

  35. Pouton CW (1997) Formulation of self-emulsifying drug delivery systems. Adv Drug Del Rev 25:47

    Article  CAS  Google Scholar 

  36. Sarciaux JM, Acar L, Sado PA (1995) Using microemulsion formulations for drug delivery of therapeutic peptides. Int J Pharm 120:127

    Article  CAS  Google Scholar 

  37. Storni T, Kundig TM, Senti G, Johansen P (2005) Immunity in response to particulate antigen-delivery systems. Adv Drug Del Rev 57:333

    Article  CAS  Google Scholar 

  38. Streatfield SJ (2006) Mucosal immunization using recombinant plant-based oral vaccines. Methods 38:150

    Article  PubMed  CAS  Google Scholar 

  39. Sudo T, Kuramoto T, Komiya S, Inoue A, Itoh K (1997) Expression of MAGE genes in osteosarcoma. J Orthop Res 15:128

    Article  PubMed  CAS  Google Scholar 

  40. Swenson EC, Curatolo WJ (1992) Intestinal permeability enhancement for proteins, peptides and other polar drugs: mechanisms and potential toxicity. Adv Drug Del Rev 8:39

    Article  CAS  Google Scholar 

  41. Swenson ES, Milisen WB, Curatolo W (1994) Intestinal permeability enhancement: efficacy, acute local toxicity and reversibility. Pharm Res 11:1132

    Article  PubMed  CAS  Google Scholar 

  42. Torres BA, Kominsky SL, Perrin GQ, Hobeika AC, Johnson HM (2001) Superantigens: the good, the bad, and the ugly. Exp Biol Med 226:164

    CAS  Google Scholar 

  43. Vinogradov SV, Bronich TK, Kabanov AV (2002) Nanosized cationic hydrogels for drug delivery: Preparation, properties and interactions with cells. Adv Drug Del Rev 54:135

    Article  CAS  Google Scholar 

  44. Vyas SP, Gupta PN (2007) Implication of nanoparticles/microparticles in mucosal vaccine delivery. Expert Rev Vaccines 6:401

    Article  PubMed  CAS  Google Scholar 

  45. Ye J, Chen GS, Song HP, Li ZS, Huang YY, Qu P, Sun YJ, Zhang XM, Sui YF (2004) Heat shock protein 70/MAGE-1 tumor vaccine can enhance the potency of MAGE-1-specific cellular immune responses in vivo. Cancer Immunol Immunother 53:825

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from China National Natural Science Foundation (No. 30271464, No. 30700994).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-Fang Sui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ge, W., Li, Y., Li, ZS. et al. The antitumor immune responses induced by nanoemulsion-encapsulated MAGE1-HSP70/SEA complex protein vaccine following peroral administration route. Cancer Immunol Immunother 58, 201–208 (2009). https://doi.org/10.1007/s00262-008-0539-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-008-0539-9

Keywords

Navigation