Skip to main content

Advertisement

Log in

Added prognostic value of ischaemic threshold in radionuclide myocardial perfusion imaging: a common-sense integration of exercise tolerance and ischaemia severity

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Reversible ischaemia at radionuclide myocardial perfusion imaging (MPI) accurately predicts risk of cardiac death and nonfatal myocardial infarction (major adverse cardiac events, MACE). This prognostic penetrance might be empowered by accounting for exercise tolerance as an indirect index of ischaemia severity. The present study aimed to verify this hypothesis integrating imaging assessment of ischaemia severity with exercise maximal rate pressure product (RPP) in a large cohort of patients with suspected or known coronary artery disease (CAD).

Methods and results

We analysed 1,502 consecutive patients (1,014 men aged 59 ± 10 years) submitted to exercise stress/rest MPI. To account for exercise tolerance, the summed difference score (SDS) was divided by RPP at tracer injection providing a clinical prognostic index (CPI). Reversible ischaemia was documented in 357 patients (24 %) and was classified by SDS as mild (SDS 2–4) in 180, moderate (SDS 5–7) in 118 and severe (SDS >7) in 59. CPI values of ischaemic patients were clustered into tertiles with lowest and highest values indicating low and high risk, respectively. CPI modified SDS risk prediction in 119/357 (33 %) patients. During a 60-month follow-up, MACE occurred in 68 patients. Kaplan-Meier analysis revealed that CPI significantly improved predictive power for MACE incidence with respect to SDS alone. Multivariate Cox analysis confirmed the additive independent value of CPI-derived information.

Conclusion

Integration of ischaemic threshold and ischaemia extension and severity can improve accuracy of exercise MPI in predicting long-term outcome in a large cohort of patients with suspected or known CAD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Shaw LJ, Hage FG, Berman DS, Hachamovitch R, Iskandrian A. Prognosis in the era of comparative effectiveness research: where is nuclear cardiology now and where should it be? J Nucl Cardiol 2012;19:1026–43.

    Article  PubMed  Google Scholar 

  2. Gibbons RJ. Noninvasive diagnosis and prognosis assessment in chronic coronary artery disease: stress testing with and without imaging perspective. Circ Cardiovasc Imaging 2008;1:257–69.

    Article  PubMed  Google Scholar 

  3. Hachamovitch R, Berman DS, Kiat H, Cohen I, Cabico JA, Friedman J, et al. Exercise myocardial perfusion SPECT in patients without known coronary artery disease: incremental prognostic value and use in risk stratification. Circulation 1996;93:905–14.

    Article  CAS  PubMed  Google Scholar 

  4. Berman DS, Kang X, Van Train KF, Lewin HC, Cohen I, Areeda J, et al. Comparative prognostic value of automatic quantitative analysis versus semiquantitative visual analysis of exercise myocardial perfusion single-photon emission computed tomography. J Am Coll Cardiol 1998;32:1987–95.

    Article  CAS  PubMed  Google Scholar 

  5. Hachamovitch R, Berman DS, Shaw LJ, Kiat H, Cohen I, Cabico JA, et al. Incremental prognostic value of myocardial perfusion single photon emission computed tomography for the prediction of cardiac death: differential stratification for risk of cardiac death and myocardial infarction. Circulation 1998;97:535–43.

    Article  CAS  PubMed  Google Scholar 

  6. Vanzetto G, Ormezzano O, Fagret D, Comet M, Denis B, Machecourt J. Long-term additive prognostic value of thallium-201 myocardial perfusion imaging over clinical and exercise stress test in low to intermediate risk patients: study in 1137 patients with 6-year follow-up. Circulation 1999;100:1521–7.

    Article  CAS  PubMed  Google Scholar 

  7. Bruce RA, Kusumi F, Hosmer D. Maximal oxygen intake and nomographic assessment of functional aerobic impairment in cardiovascular disease. Am Heart J 1973;85:546–62.

    Article  CAS  PubMed  Google Scholar 

  8. Duncker DJ, Bache RJ. Regulation of coronary blood flow during exercise. Physiol Rev 2008;88:1009–86.

    Article  CAS  PubMed  Google Scholar 

  9. Acampa W, Petretta M, Florimonte L, Mattera A, Cuocolo A. Prognostic value of exercise cardiac tomography performed late after percutaneous coronary intervention in symptomatic and symptom-free patients. Am J Cardiol 2003;91:259–63.

    Article  PubMed  Google Scholar 

  10. Hesse B, Tägil K, Cuocolo A, Anagnostopoulos C, Bardiés M, Bax J, et al. EANM/ESC procedural guidelines for myocardial perfusion imaging in nuclear cardiology. Eur J Nucl Med Mol Imaging 2005;32:855–97.

    Article  CAS  PubMed  Google Scholar 

  11. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 2002;105:539–42.

    Article  PubMed  Google Scholar 

  12. Wilson PW, D’Agostino RB, Levy D, Belanger AM, Silbershatz H, Kannel WB. Prediction of coronary heart disease using risk factor categories. Circulation 1998;97:1837–47.

    Article  CAS  PubMed  Google Scholar 

  13. Mark DB, Shaw L, Harrell FE, Hlatky MA, Lee KL, Bengtson JR, et al. Prognostic value of a treadmill exercise score in outpatients with suspected coronary artery disease. N Engl J Med 1991;325:849–53.

    Article  CAS  PubMed  Google Scholar 

  14. Sharir T, Germano G, Kang X, Lewin HC, Miranda R, Cohen I, et al. Prediction of myocardial infarction versus cardiac death by gated myocardial perfusion SPECT: risk stratification by the amount of stress-induced ischemia and the poststress ejection fraction. J Nucl Med 2001;42:831–7.

    CAS  PubMed  Google Scholar 

  15. Doukky R, Hayes K, Frogge N, Balakrishnan G, Dontaraju VS, Rangel MO, et al. Impact of appropriate use on the prognostic value of single-photon emission computed tomography myocardial perfusion imaging. Circulation 2013;128:1634–43.

    Article  PubMed  Google Scholar 

  16. Grambsch P, Therneau T. Proportional hazards tests and diagnostics based on weighted residuals. Biometrika 1994;81:515–26.

    Article  Google Scholar 

  17. Heusch G. Heart rate in the pathophysiology of coronary blood flow and myocardial ischaemia: benefit from selective bradycardic agents. Br J Pharmacol 2008;153:1589–601.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Rossen JD, Quillen JE, Lopez AG, Stenberg RG, Talman CL, Winniford MD. Comparison of coronary vasodilation with intravenous dipyridamole and adenosine. J Am Coll Cardiol 1991;18:485–91.

    Article  CAS  PubMed  Google Scholar 

  19. Mekkaoui C, Jadbabaie F, Dione DP, Meoli DF, Purushothaman K, Belardinelli L, et al. Effects of adenosine and a selective A2A adenosine receptor agonist on hemodynamic and thallium-201 and technetium-99m-sestaMIBI biodistribution and kinetics. JACC Cardiovasc Imaging 2009;2:1198–208.

    Article  PubMed  Google Scholar 

  20. Bonow RO. Sixth Annual Mario S. Verani, MD Memorial Lecture: Cardiovascular imaging—added value or added cost? J Nucl Cardiol 2008;15:170–7.

    Article  PubMed  Google Scholar 

  21. Cortigiani L, Bigi R, Landi P, Bovenzi F, Picano E, Sicari R. Prognostic implication of stress echocardiography in 6214 hypertensive and 5328 normotensive patients. Eur Heart J 2011;32:1509–18.

    Article  PubMed  Google Scholar 

  22. Heitner JF, Klem I, Rasheed D, Chandra A, Kim HW, Van Assche LM, et al. Stress cardiac MR imaging compared with stress echocardiography in the early evaluation of patients who present to the emergency department with intermediate-risk chest pain. Radiology 2014;271:56–64.

    Article  PubMed  Google Scholar 

  23. Greenwood JP, Maredia N, Younger JF, Brown JM, Nixon J, Everett CC, et al. Cardiovascular magnetic resonance and single-photon emission computed tomography for diagnosis of coronary heart disease (CE-MARC): a prospective trial. Lancet 2012;379:453–60.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Wong DTL, Ko BS, Cameron JD, Leong DP, Leung MCH, Malaiapan Y, et al. Comparison of diagnostic accuracy of combined assessment using adenosine stress computed tomography perfusion + computed tomography angiography with transluminal attenuation gradient + computed tomography angiography against invasive fractional flow reserve. J Am Coll Cardiol 2014;63:1904–12.

    Article  PubMed  Google Scholar 

  25. Marini C, Bezante G, Gandolfo P, Modonesi E, Morbelli SD, Depascale A, et al. Optimization of flow reserve measurement using SPECT technology to evaluate the determinants of coronary microvascular dysfunction in diabetes. Eur J Nucl Med Mol Imaging 2010;37:357–67.

    Article  PubMed  Google Scholar 

  26. Sambuceti G, Parodi O. Role of coronary microvascular abnormalities in coronary artery disease—implications for perfusion imaging. J Nucl Cardiol 1995;2:78–84.

    Article  CAS  PubMed  Google Scholar 

  27. Sambuceti G, Marzullo P, Giorgetti A, Neglia D, Marzilli M, Salvadori P, et al. Global alteration in perfusion response to increasing oxygen consumption in patients with single-vessel coronary artery disease. Circulation 1994;90:1696–705.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The study has been supported by CARIGE Foundation within the program: “Studio Medico Nucleare di Variabili fisiologiche di interesse oncologico”.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecilia Marini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marini, C., Acampa, W., Bauckneht, M. et al. Added prognostic value of ischaemic threshold in radionuclide myocardial perfusion imaging: a common-sense integration of exercise tolerance and ischaemia severity. Eur J Nucl Med Mol Imaging 42, 750–760 (2015). https://doi.org/10.1007/s00259-014-2963-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-014-2963-8

Keywords

Navigation