Skip to main content

Advertisement

Log in

Evaluation of intratumoural heterogeneity on 18F-FDG PET/CT for characterization of peripheral nerve sheath tumours in neurofibromatosis type 1

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

The aim of the study was to evaluate the potential usefulness of intratumoural tracer uptake heterogeneity on 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT as compared to a cut-off maximum standardized uptake value (SUVmax) for characterization of peripheral nerve sheath tumours (PNSTs) in neurofibromatosis type 1 (NF1).

Methods

Fifty patients suffering from NF1 were examined by 18F-FDG PET/CT. Intralesional tracer uptake was analysed qualitatively and semi-quantitatively by measuring the mean and maximum SUV. Uptake heterogeneity was graded qualitatively using a three-point scale and semi-quantitatively by calculating an SUV-based heterogeneity index (HISUV). Cohen’s κ was used to determine inter- and intra-rater agreement. Histopathological evaluation and clinical as well as radiological follow-up examinations served as the reference standards.

Results

A highly significant correlation between the degree of intratumoural uptake heterogeneity on 18F-FDG PET and malignant transformation of PNSTs was observed (p < 0.0001). Semi-quantitative HISUV was significantly higher in malignant PNSTs (MPNSTs) than in benign tumours (p = 0.0002). Both intralesional heterogeneity and SUVmax could be used to identify malignant tumours with a sensitivity of 100 %. Cohen’s κ was 0.86 for inter-rater agreement and 0.88 for intra-rater agreement on heterogeneity.

Conclusion

MPNSTs in patients with NF1 demonstrate considerable intratumoural uptake heterogeneity on 18F-FDG PET/CT. Assessment of tumour heterogeneity is highly reproducible. Both tumour heterogeneity and a cut-off SUVmax may be used to sensitively identify malignant PNSTs, but the specificity is higher for the latter. A combination of both methods leads to a non-significant improvement in diagnostic performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Evans DG, Baser ME, McGaughran J, Sharif S, Howard E, Moran A. Malignant peripheral nerve sheath tumours in neurofibromatosis 1. J Med Genet 2002;39(5):311–4.

    Article  PubMed  CAS  Google Scholar 

  2. Grobmyer SR, Reith JD, Shahlaee A, Bush CH, Hochwald SN. Malignant peripheral nerve sheath tumor: molecular pathogenesis and current management considerations. J Surg Oncol 2008;97(4):340–9.

    Article  PubMed  CAS  Google Scholar 

  3. Ferner RE, Gutmann DH. International consensus statement on malignant peripheral nerve sheath tumors in neurofibromatosis. Cancer Res 2002;62(5):1573–7.

    PubMed  CAS  Google Scholar 

  4. Ducatman BS, Scheithauer BW, Piepgras DG, Reiman HM, Ilstrup DM. Malignant peripheral nerve sheath tumors. A clinicopathologic study of 120 cases. Cancer 1986;57(10):2006–21.

    Article  PubMed  CAS  Google Scholar 

  5. Korf BR. Plexiform neurofibromas. Am J Med Genet 1999;89(1):31–7.

    Article  PubMed  CAS  Google Scholar 

  6. Mautner VF, Hartmann M, Kluwe L, Friedrich RE, Fünsterer C. MRI growth patterns of plexiform neurofibromas in patients with neurofibromatosis type 1. Neuroradiology 2006;48(3):160–5.

    Article  PubMed  CAS  Google Scholar 

  7. Warbey VS, Ferner RE, Dunn JT, Calonje E, O’Doherty MJ. [18F]FDG PET/CT in the diagnosis of malignant peripheral nerve sheath tumours in neurofibromatosis type-1. Eur J Nucl Med Mol Imaging 2009;36(5):751–7.

    Article  PubMed  CAS  Google Scholar 

  8. Rasmussen SA, Yang Q, Friedman JM. Mortality in neurofibromatosis 1: an analysis using U.S. death certificates. Am J Hum Genet 2001;68(5):1110–8.

    Article  PubMed  CAS  Google Scholar 

  9. Ferner RE, Golding JF, Smith M, Calonje E, Jan W, Sanjayanathan V, et al. [18F]2-fluoro-2-deoxy-D-glucose positron emission tomography (FDG PET) as a diagnostic tool for neurofibromatosis 1 (NF1) associated malignant peripheral nerve sheath tumours (MPNSTs): a long-term clinical study. Ann Oncol 2008;19(2):390–4.

    Article  PubMed  CAS  Google Scholar 

  10. Brenner W, Friedrich RE, Gawad KA, Hagel C, von Deimling A, de Wit M, et al. Prognostic relevance of FDG PET in patients with neurofibromatosis type-1 and malignant peripheral nerve sheath tumours. Eur J Nucl Med Mol Imaging 2006;33(4):428–32.

    Article  PubMed  Google Scholar 

  11. Benz MR, Czernin J, Dry SM, Tap WD, Allen-Auerbach MS, Elashoff D, et al. Quantitative F18-fluorodeoxyglucose positron emission tomography accurately characterizes peripheral nerve sheath tumors as malignant or benign. Cancer 2010;116(2):451–8.

    Article  PubMed  CAS  Google Scholar 

  12. Wasa J, Nishida Y, Tsukushi S, Shido Y, Sugiura H, Nakashima H, et al. MRI features in the differentiation of malignant peripheral nerve sheath tumors and neurofibromas. AJR Am J Roentgenol 2010;194(6):1568–74.

    Article  PubMed  Google Scholar 

  13. Friedrich RE, Kluwe L, Fünsterer C, Mautner VF. Malignant peripheral nerve sheath tumors (MPNST) in neurofibromatosis type 1 (NF1): diagnostic findings on magnetic resonance images and mutation analysis of the NF1 gene. Anticancer Res 2005;25(3A):1699–702.

    PubMed  Google Scholar 

  14. NIH Office of Medical Applications of Research. Neurofibromatosis. Conference statement. National Institutes of Health Consensus Development Conference. Arch Neurol 1988;45(5):575–8.

    Article  Google Scholar 

  15. Trojani M, Contesso G, Coindre JM, Rouesse J, Bui NB, de Mascarel A, et al. Soft-tissue sarcomas of adults; study of pathological prognostic variables and definition of a histopathological grading system. Int J Cancer 1984;33(1):37–42.

    Article  PubMed  CAS  Google Scholar 

  16. Lin BT, Weiss LM, Medeiros LJ. Neurofibroma and cellular neurofibroma with atypia: a report of 14 tumors. Am J Surg Pathol 1997;21(12):1443–9.

    Article  PubMed  CAS  Google Scholar 

  17. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics 1977;33(1):159–74.

    Article  PubMed  CAS  Google Scholar 

  18. Cardona S, Schwarzbach M, Hinz U, Dimitrakopoulou-Strauss A, Attigah N, Mechtersheimer section sign G, et al. Evaluation of F18-deoxyglucose positron emission tomography (FDG-PET) to assess the nature of neurogenic tumours. Eur J Surg Oncol 2003;29(6):536–41.

    Article  PubMed  CAS  Google Scholar 

  19. Matsumine A, Kusuzaki K, Nakamura T, Nakazora S, Niimi R, Matsubara T, et al. Differentiation between neurofibromas and malignant peripheral nerve sheath tumors in neurofibromatosis 1 evaluated by MRI. J Cancer Res Clin Oncol 2009;135(7):891–900.

    Article  PubMed  Google Scholar 

  20. Tixier F, Le Rest CC, Hatt M, Albarghach N, Pradier O, Metges JP, et al. Intratumor heterogeneity characterized by textural features on baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer. J Nucl Med 2011;52(3):369–78.

    Article  PubMed  Google Scholar 

  21. van Velden FH, Cheebsumon P, Yaqub M, Smit EF, Hoekstra OS, Lammertsma AA, et al. Evaluation of a cumulative SUV-volume histogram method for parameterizing heterogeneous intratumoural FDG uptake in non-small cell lung cancer PET studies. Eur J Nucl Med Mol Imaging 2011;38(9):1636–47.

    Article  PubMed  Google Scholar 

  22. Chicklore S, Goh V, Siddique M, Roy A, Marsden PK, Cook GJ. Quantifying tumour heterogeneity in (18)F-FDG PET/CT imaging by texture analysis. Eur J Nucl Med Mol Imaging 2013;40:133–40.

    Google Scholar 

  23. Buchbender C, Heusner TA, Lauenstein TC, Bockisch A, Antoch G. Oncologic PET/MRI, part 2: bone tumors, soft-tissue tumors, melanoma, and lymphoma. J Nucl Med 2012;53(8):1244–52.

    Article  PubMed  Google Scholar 

  24. Buck AK, Herrmann K, Büschenfelde CM, Juweid ME, Bischoff M, Glatting G, et al. Imaging bone and soft tissue tumors with the proliferation marker [18F]fluorodeoxythymidine. Clin Cancer Res 2008;14(10):2970–7.

    Article  PubMed  CAS  Google Scholar 

  25. Eary JF, Link JM, Muzi M, Conrad EU, Mankoff DA, White JK, et al. Multiagent PET for risk characterization in sarcoma. J Nucl Med 2011;52(4):541–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Salamon.

Additional information

Johannes Salamon and Thorsten Derlin contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salamon, J., Derlin, T., Bannas, P. et al. Evaluation of intratumoural heterogeneity on 18F-FDG PET/CT for characterization of peripheral nerve sheath tumours in neurofibromatosis type 1. Eur J Nucl Med Mol Imaging 40, 685–692 (2013). https://doi.org/10.1007/s00259-012-2314-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-012-2314-6

Keywords

Navigation