Skip to main content

Advertisement

Log in

Morphologic characterization of meniscal root ligaments in the human knee with magnetic resonance microscopy at 11.7 and 3 T

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Objective

To determine the feasibility of using MR microscopy to characterize the root ligaments of the human knee at both ultra-high-field (11.7 T) and high-field (3 T) strengths.

Materials and methods

Seven fresh cadaveric knees were used for this study. Six specimens were imaged at 11.7 T and one specimen at 3 T using isotropic or near-isotropic voxels. Histologic correlation was performed on the posteromedial root ligament of one specimen. Meniscal root ligament shape, signal intensity, and ultrastructure were characterized.

Results

High-resolution, high-contrast volumetric images were generated from both MR systems. Meniscal root ligaments were predominantly oval in shape. Increased signal intensity was most evident at the posteromedial and posterolateral root ligaments. On the specimen that underwent histologic preparation, increased signal intensity corresponded to regions of enthesis fibrocartilage. Collagen fascicles were continuous between the menisci and root ligaments. Predominantly horizontal meniscal radial tie fibers continued into the root ligaments as vertical endoligaments.

Conclusion

MR microscopy can be used to characterize and delineate the distinct ultrastructure of the root ligaments on both ultra-high-field- and high-field-strength MR systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Allaire R, Muriuki M, Gilbertson L, Harner CD. Biomechanical consequences of a tear of the posterior root of the medial meniscus. Similar to total meniscectomy. The Journal of bone and joint surgery American volume. 2008;90(9):1922–31.

    PubMed  Google Scholar 

  2. Arnoczky SP, Warren RF. Microvasculature of the human meniscus. The American journal of sports medicine. 1982;10(2):90–5.

    Article  CAS  PubMed  Google Scholar 

  3. Bae WC, Du J, Bydder GM, Chung CB. Conventional and ultrashort time-to-echo magnetic resonance imaging of articular cartilage, meniscus, and intervertebral disk. Topics in magnetic resonance imaging: TMRI. 2010;21(5):275–89.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Benjamin M, Evans EJ, Rao RD, Findlay JA, Pemberton DJ. Quantitative differences in the histology of the attachment zones of the meniscal horns in the knee joint of man. J Anat. 1991;177:127–34.

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Benjamin M, Milz S, Bydder GM. Magnetic resonance imaging of entheses. Part 1. Clin Radiol. 2008;63(6):691–703.

    Article  CAS  PubMed  Google Scholar 

  6. Benjamin M, Milz S, Bydder GM. Magnetic resonance imaging of entheses. Part 2. Clin Radiol. 2008;63(6):704–11.

    Article  CAS  PubMed  Google Scholar 

  7. Benjamin M, Ralphs JR. Fibrocartilage in tendons and ligaments—an adaptation to compressive load. J Anat. 1998;193(Pt 4):481–94.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Chard MD, Cawston TE, Riley GP, Gresham GA, Hazleman BL. Rotator cuff degeneration and lateral epicondylitis: a comparative histological study. Ann Rheum Dis. 1994;53(1):30–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. De Smet AA, Blankenbaker DG, Kijowski R, Graf BK, Shinki K. MR diagnosis of posterior root tears of the lateral meniscus using arthroscopy as the reference standard. AJR Am J Roentgenol. 2009;192(2):480–6.

    Article  PubMed  Google Scholar 

  10. Fallon J, Blevins FT, Vogel K, Trotter J. Functional morphology of the supraspinatus tendon. J Orthop Res. 2002;20(5):920–6.

    Article  PubMed  Google Scholar 

  11. Ferretti M, Levicoff EA, Macpherson TA, Moreland MS, Cohen M, Fu FH. The fetal anterior cruciate ligament: an anatomic and histologic study. Arthroscopy. 2007;23(3):278–83.

    Article  PubMed  Google Scholar 

  12. Frowen P, Benjamin M. Variations in the quality of uncalcified fibrocartilage at the insertions of the extrinsic calf muscles in the foot. J Anat. 1995;186(Pt 2):417–21.

    PubMed Central  PubMed  Google Scholar 

  13. Gimi B. Magnetic resonance microscopy: concepts, challenges, and state-of-the-art. Methods in molecular medicine. 2006;124:59–84.

    PubMed  Google Scholar 

  14. Hammoudi TM, Temenoff JS. In: Burdick JA, Mauck RL, editors. Biomaterials for tissue engineering applications: a review of the past and future trends. Wien, Austria: Springer; 2011. p. 311.

    Google Scholar 

  15. Johannsen AM, Civitarese DM, Padalecki JR, Goldsmith MT, Wijdicks CA, LaPrade RF. Qualitative and quantitative anatomic analysis of the posterior root attachments of the medial and lateral menisci. The American journal of sports medicine. 2012;40(10):2342–7.

    Article  PubMed  Google Scholar 

  16. Kim YM, Joo YB. Pullout failure strength of the posterior horn of the medial meniscus with root ligament tear. Knee surgery, sports traumatology, arthroscopy. Official journal of the ESSKA. 2013;21(7):1546–52.

    Google Scholar 

  17. Koenig JH, Ranawat AS, Umans HR, Difelice GS. Meniscal root tears: diagnosis and treatment. Arthroscopy. 2009;25(9):1025–32.

    Article  PubMed  Google Scholar 

  18. Kohn D, Moreno B. Meniscus insertion anatomy as a basis for meniscus replacement: a morphological cadaveric study. Arthroscopy. 1995;11(1):96–103.

    Article  CAS  PubMed  Google Scholar 

  19. Longo UG, Campi S, Romeo G, Spiezia F, Maffulli N, Denaro V. Biological strategies to enhance healing of the avascular area of the meniscus. Stem Cells Int. 2012;2012:528359.

    PubMed Central  PubMed  Google Scholar 

  20. Notohamiprodjo M, Horng A, Pietschmann MF, Muller PE, Horger W, Park J, et al. MRI of the knee at 3 T: first clinical results with an isotropic PDfs-weighted 3D-TSE-sequence. Invest Radiol. 2009;44(9):585–97.

    Article  PubMed  Google Scholar 

  21. Otazo R, Kim D, Axel L, Sodickson DK. Combination of compressed sensing and parallel imaging for highly accelerated first-pass cardiac perfusion MRI. Magn Reson Med. 2010;64(3):767–76.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Pauli C, Grogan SP, Patil S, Otsuki S, Hasegawa A, Koziol J, et al. Macroscopic and histopathologic analysis of human knee menisci in aging and osteoarthritis. Osteoarthritis and cartilage/OARS, Osteoarthritis Research Society. 2011;19(9):1132–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Peterfy CG, Janzen DL, Tirman PF, van Dijke CF, Pollack M, Genant HK. “Magic-angle” phenomenon: a cause of increased signal in the normal lateral meniscus on short-TE MR images of the knee. AJR Am J Roentgenol. 1994;163(1):149–54.

    Article  CAS  PubMed  Google Scholar 

  24. Ren AH, Zheng Z-Z, Shang Y, Tian C-Y. An anatomical study of normal meniscal roots with isotropic 3D MRI at 3 T. Eur J Radiol. 2012;81(7):e783–788.

    Article  PubMed  Google Scholar 

  25. Seedhom BB, Hargreaves DJ. Transmission of the load in the knee joint with special reference to the role of the menisci: Part II: Experimental results, discussion and conclusions. Engineering in Medicine. 1979;8(4):220–8.

    Article  Google Scholar 

  26. Shankman S, Beltran J, Melamed E, Rosenberg ZS. Anterior horn of the lateral meniscus: another potential pitfall in MR imaging of the knee. Radiology. 1997;204(1):181–4.

    Article  CAS  PubMed  Google Scholar 

  27. Speck O, Weigel M, Scheffler K. Contrasts, Mechanisms, and Sequences. In: Hennig J, Speck O, editors. High-field MR imaging. Heidelberg: Springer; 2011. p. 93–4.

    Google Scholar 

  28. Temenoff JS, Lei J. Engineering Fibrous Tissues and Their Interfaces with Bone. In: Structural interfaces and attachments in biology. New York: Springer; 2013. p. 325.

    Google Scholar 

  29. Toy JO, Feeley BT, Gulotta LV, Warren RF. Arthroscopic avulsion repair of a pediatric ACL with an anomalous primary insertion into the lateral meniscus. HSS J. 2011;7(2):190–3.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Tsao J, Kozerke S. MRI temporal acceleration techniques. Journal of magnetic resonance imaging: JMRI. 2012;36(3):543–60.

    Article  PubMed  Google Scholar 

  31. Villegas DF, Donahue TL. Collagen morphology in human meniscal attachments: a SEM study. Connect Tissue Res. 2010;51(5):327–36.

    Article  PubMed  Google Scholar 

  32. You MW, Park JS, Park SY, Jin W, Ryu KN. Posterior root of lateral meniscus: the detailed anatomic description on 3 T MRI. Acta Radiol. 2014;55(3):359–65.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Eric Y. Chang gratefully acknowledges grant support from a VA Clinical Science Research and Development Career Development Grant (1IK2CX000749).

Conflict of interest

No conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Y. Chang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, E.Y., Biswas, R., DiCamillo, P. et al. Morphologic characterization of meniscal root ligaments in the human knee with magnetic resonance microscopy at 11.7 and 3 T. Skeletal Radiol 43, 1395–1402 (2014). https://doi.org/10.1007/s00256-014-1941-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-014-1941-3

Keywords

Navigation