Skip to main content
Log in

Laboratory simulation showing the influence of salt efflorescence on the weathering of composite building materials

  • Special Issue
  • Published:
Environmental Geology

Abstract

A common decay scenario in old and new buildings was simulated: the effects on masonry structures of salt efflorescence or subefflorescence produced by the rise of saline solution. Eight different types of masonry wall each made up of a combination of different construction materials (brick, calcarenite and four types of mortar were combined as follows: pure lime mortar, mortar + air entraining agent, mortar + pozzolana, mortar + air entraining agent + pozzolana) have been tested. These materials have different textures (strong anisotropy in brick, irregular-shaped pores in calcarenite, retraction fissures or rounded pores in mortars which also show a reduction of porosity along the contact area with the stone), different hydric behaviours (under total immersion brick + mortar specimens absorb water faster than calcarenite + mortar specimens) and different pore size distribution (brick shows unimodal pore distribution, whereas calcarenite and mortars are bimodal). In the salt weathering test, mortars interlayered with masonry blocks did not act as sacrificial layers. In fact, they allowed salts to rise through them and crystallize on the brick or calcarenite pieces causing the masonry structure to decay. Only the addition of an air-entraining agent partially hindered the capillary rise of the salt-laden solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Benavente D, García del Cura MA, Ordóñez S (2003) Salt influence on evaporation from porous building rocks. Construct Build Mater 17:113–122

    Article  Google Scholar 

  • Benavente D, García del Cura MA, Fort R, Ordóñez S (2004) Durability estimation of porous building stones from pore structure and strength. Eng Geol 74:113–127

    Article  Google Scholar 

  • Benavente D, Martínez Martínez J, Cueto N, García del Cura MA (2007) Salt weathering in dual-porosity building dolostones. Eng Geol 94:215–226

    Article  Google Scholar 

  • Binda L, Modena C, Baronio G, Abbaneo S (1997) Repair and investigation techniques for stone masonry walls. Construct Build Mater 11:133–142

    Article  Google Scholar 

  • Binda L, Saisi A, Tiraboschi C (2000) Investigation procedures for the diagnosis of historic masonries. Construct Build Mater 14:199–233

    Article  Google Scholar 

  • Cardell C, Delalieux F, Roumpopoulos K, Moropoulou A, Auger F, Van Griegen R (2003) Salt-induced decay in calcareous stone monuments and buildings in a marine environment in SW France. Construct Build Mater 17:165–179

    Article  Google Scholar 

  • Charola AE (2004) Deterioration in historic buildings and monuments. Paper presented at the 10th International Congress on deterioration and conservation of stone, Stockholm (Sweden), vol 1, 3–14

  • Charola AE (2000) Salts in the deterioration of porous materials: an overview. J Am Inst Conserv 39:327–343

    Article  Google Scholar 

  • Ciabach J, Skibinski S (1989) Analyses of the total salt content and control of salt removal from stone historical objects. Paper presented at the 1° Simposio Internazionale “La conservazione dei monumenti nel bacino del Mediterraneo”, Bari (Italy), pp 325–328

    Google Scholar 

  • Cooper TP, Dowding P, Lewis JO, Mulvin L, O’Brien P, Olley J, O’Daly G (1989) Contribution of calcium from limestone and mortar to the decay of granite walling. Paper presented at the European Symposium “Science, Technology and European Cultural Heritage, Bologna (Italy), pp 456–461

    Google Scholar 

  • Cultrone G, Rodríguez Navarro C, Sebastián E, Cazalla O, de la Torre MJ (2001) Carbonate and silicate phase reactions during ceramic firing. Eur J Mineral 13:621–634

    Article  Google Scholar 

  • Cultrone G, Sebastián E, Elert K, de la Torre MJ, Cazalla O, Rodríguez Navarro C (2004) Influence of mineralogy and firing temperature on porosity of bricks. J Eur Ceram Soc 24:547–564

    Article  Google Scholar 

  • Cultrone G, Sebastián E, Ortega Huertas M (2005) Forced and natural carbonation of lime-based mortars with and without additives: mineralogical and textural changes. Cem Concr Res 35:2278–2289

    Article  Google Scholar 

  • Cultrone G, Russo LG, Calabrò C, Urosevic M, Pezzino A (2008) Influence of pore system characteristics on limestone vulnerability: a laboratory study. Environ Geol (in press)

  • Dunham RJ (1962) Classification of carbonate rocks according to depositional texture. In: Classification of carbonate rocks. American Association of Petroleum Geologists Memoir (USA), pp 108–121

  • Espinosa RM, Franke L, Deckelmann G (2008) Model for the mechanical stress due to the salt crystallization in porous materials. Constr Build Mater (in press)

  • Evans IS (1970) Salt crystallization and rock weathering: a review. Revue de Geomorphologie dynamique 19:153–177

    Google Scholar 

  • Gonçalves TD, Pel L, Delgado Rodrigues J (2007) Drying of salt-contamined masonry: MRI laboratory monitoring. Environ Geol 52:293–302

    Article  Google Scholar 

  • Groot C, Bartos P, Huges J (1999) Historic mortars: characteristics and test concluding summary and state of the art. In: International Workshop on Historic Mortars. Paisley (UK), pp 443–454

  • Grossi CM, Esbert RM (1994) Las sales solubles en el deterioro de rocas monumentales. Revisión Bibliográfica. Materiales de Construcción 44:15–29

    Google Scholar 

  • Hall C, Hoff WD (2002) Water transport in brick, stone and concrete. Spon Press, London, New York

    Google Scholar 

  • Haneef SJ, Dickinson C, Johnson JB, Thompson GE, Wood GC (1992) Simulation of the degradation of coupled stones by artificial acid rain. Stud Conserv 37:105–112

    Article  Google Scholar 

  • Hendry EA (2002) Masonry walls: materials and construction. Constr Build Mater 15:323–330

    Article  Google Scholar 

  • Kuchitsu N, Ishizaki T, Nishiura T (1999) Salt weathering of brick monuments in Ayutthaya, Thailand. Eng Geol 55:91–99

    Article  Google Scholar 

  • La Iglesia A, González V, López Acevedo V, Viedma C (1997) Salt crystallization in porous construction materials. I. Estimation of crystallization pressure. J Cryst Growth 177:111–118

    Article  Google Scholar 

  • Larbi JA (2004) Microscopy applied to the diagnosis of the deterioration of brick masonry. Constr Build Mater 18:299–307

    Article  Google Scholar 

  • Lawrence RM, Mays TJ, Rugby SP, Walter P, D’Ayala D (2007) Effects of carbonation on the pore structure of non-hydraulic lime mortars. Cem Concr Res 37:1059–1069

    Article  Google Scholar 

  • Linares Fernández L, Rodríguez Navarro C, Sebastián Pardo E, de la Torre López MJ, Cultrone G, Cazalla O (2002) Efecto de aditivos en la cristalización de sulfato sódico. Boletín de la Sociedad Española de Mineralogía 25A:49–50

    Google Scholar 

  • Lubelli B, Van Hess RPJ (2007) Effectiveness of crystallization inhibitors in preventing salt damage in building materials. J Cult Herit 8:223–234

    Article  Google Scholar 

  • Lubelli B, Van Hees RPJ, Groot GWP (2006a) Investigation on the behaviour of a restoration plaster applied on heavy salt loaded masonry. Constr Build Mater 20:691–699

    Article  Google Scholar 

  • Lubelli B, Van Hees RPJ, Groot GWP (2006b) Sodium chloride crystallization in a “salt transporting” restoration plaster. Cem Concr Res 36:1467–1474

    Article  Google Scholar 

  • Luque A, Cultrone G, Sebastián E, Cazalla O (2008) Evaluation of the effectiveness of treatment products in improving the durability of a bioclastic limestone (Granada, Spain). Materiales de Construcción (in press)

  • Maravelaki Kaalitzaki P (2007) Hydraulic lime mortars with siloxane for waterproofing historic masonry. Cem Concr Res 37:283–290

    Article  Google Scholar 

  • Martín JD (2004) Using XPowder: a software package for powder X-ray diffraction analysis. http://www.xpowder.com. Legal Deposit GR 1001/04, Spain

  • Mendes N, Philippi PC (2005) A method for predicting heat and moisture transfer through multilayered walls based on temperature and moisture content gradients. Int J Heat Mass Transf 48:37–51

    Article  Google Scholar 

  • Moreno F, Vilela SAG, Antunes ASG, Alves CAS (2006) Capillary rising salt pollution and granitic stone erosive decay in the parish church of Torre del Moncorvo (NE Portugal). Implications for conservation strategy. J Cult Herit 7:56–66

    Article  Google Scholar 

  • Moropoulou A, Bakolas A, Moundoulas P, Aggelakopoulou E, Anagnostopoulou S (2005) Strength development and lime reaction in mortars for repairing historic masonries. Cem Concr Res 27:289–294

    Article  Google Scholar 

  • Neville A (2004) The confused world of sulphate attach on concrete. Cem Concr Res 34:1275–1296

    Article  Google Scholar 

  • NORMAL 29/88 (1988) Misura dell’indice di asciugamento (drying index). CNR-ICR, Roma (Italy)

    Google Scholar 

  • Petkovic J, Huinink HP, Pel L, Kopinga K, Van Hess RPJ (2007) Salt transport in plaster/substrate layers. Mater Struct 40:475–490

    Article  Google Scholar 

  • Poli T, Toniolo L, Valentini M, Bizzaro G, Melzi R, Tedoldi F, Cannazza G (2007) A portable NMR device for the evaluation of water presence in building materials. J Cult Herit 8:134–140

    Article  Google Scholar 

  • Price CA (1996) Stone conservation. An overview of current research. The Getty Conservation Institute, Santa Monica (USA)

    Google Scholar 

  • Pye K, Schiavon N (1989) Cause of sulphate attack on concrete, render and stone indicated by sulphur isotope ratios. Nature 342:663–664

    Article  Google Scholar 

  • Rodríguez Navarro C, Cultrone G, Sánchez Navas A, Sebastián E (2003) Dynamics of high-T muscovite to mullite transformation: a TEM study. Am Mineral 88:713–724

    Google Scholar 

  • Rodríguez Navarro C, Dohene E (1999) Salt weathering: influence of evaporation rate, supersaturation and crystallization pattern. Earth Surf Process Landf 24:191–209

    Article  Google Scholar 

  • Rodríguez Navarro C, Dohene E, Sebastián E (2000) How does sodium sulfate crystallize? Implications for the decay and testing of building materials. Cem Concr Res 30:1527–1534

    Article  Google Scholar 

  • Rodríguez Navarro C, Linares Fernández L, Dohene E, Sebastián E (2002) Effects of ferrocyanide ions on NaCl crystallization in porous stone. J Cryst Growth 243:503–516

    Article  Google Scholar 

  • Ruiz Agudo (2007) Prevención del daño debido a la cristalización de sales en el patrimonio histórico construido mediante el uso de inhibidores de la cristalización. PhD, University of Granada, Spain

  • Scherer GW (1999) Crystallization in pores. Cem Concr Res 29:1347–1358

    Article  Google Scholar 

  • Schiavon N, Chiavari G, Schiavon G, Fabbri D (1995) Nature and decay effects of urban soiling on granitic building stones. Sci Total Environ 167:87–101

    Article  Google Scholar 

  • Steiger M (2005a) Crystal growth in porous materials. I: The crystallization pressure of large crystals. J Cryst Growth 282:455–469

    Article  Google Scholar 

  • Steiger M (2005b) Crystal growth in porous materials. II: influence of crystal size on the crystallization pressure. J Cryst Growth 282:470–481

    Article  Google Scholar 

  • UNE 80-301-87 (1987) Cementos. Definiciones, clasificación y especificaciones. Primer complemento. AENOR, Madrid (Spain)

    Google Scholar 

  • UNI-EN-1925 (2000) Metodi di prova per pietre naturali. Determinazione del coefficiente di assorbimento d’acqua per capillarità. CNR-ICR, Roma (Italy)

    Google Scholar 

  • UNI-EN-1936 (2007) Metodi di prova per pietre naturali. Determinazione della massa volumica reale e della massa volumica apparente, e della porosità totale e aperta. CNR-ICR, Roma (Italy)

    Google Scholar 

  • UNI-EN-13755 (2002) Metodi di prova per pietre naturali. Determinazione dell’assorbimento d’acqua a pressione atmosferica. CNR-ICR, Roma (Italy)

    Google Scholar 

  • Van TT, Beck K, Al-Mukhtar M (2007) Accelerated weathering tests on two highly porous limestones. Environ Geol 52:283–292

    Article  Google Scholar 

  • Van Hess RPJ, Brocken HJP (2004) Damage development to treated brick masonry in a long-term salt crystallisation test. Constr Build Mater 18:331–338

    Article  Google Scholar 

  • Veniale F, Setti M, Rodríguez Navarro C, Lodola S, Palestra W, Busetto A (2003) Thaumasite as decay product of cement mortar in brick masonry of a church near Venice. Cem Concr Compos 25:1123–1129

    Article  Google Scholar 

  • Watt D, Colston B (2000) Investigating the effects of humidity and salt crystallisation on medieval masonry. Build Environ 35:737–749

    Article  Google Scholar 

  • Winkler EM (1987) Weathering and weathering rates of natural stone. Environ Geol Water Sci 9:85–92

    Article  Google Scholar 

  • Winkler EM, Singer PC (1972) Crystallization pressure of salts in stone and concrete. Geol Soc Am Bull 83:3509–3514

    Article  Google Scholar 

Download references

Acknowledgments

This research has been supported by a Marie Curie Fellowship of the European Community Programme “Energy, Environment and Sustainable Development” under contract number EVK4-CT-2002-50006, the Research Group RNM179 of the Junta de Andalucía and the Research Project DGI MAT2000-06804. We thank the Centro de Instrumentación Científica of the Universidad de Granada for technical assistance during FESEM analyses and Nigel Walkington for the translation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Cultrone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cultrone, G., Sebastián, E. Laboratory simulation showing the influence of salt efflorescence on the weathering of composite building materials. Environ Geol 56, 729–740 (2008). https://doi.org/10.1007/s00254-008-1332-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00254-008-1332-y

Keywords

Navigation