Skip to main content

Advertisement

Log in

Changes in the diversity and composition of gut microbiota of weaned piglets after oral administration of Lactobacillus or an antibiotic

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The gut microbiota plays important roles in the health and well-being of animals, and high-throughput sequencing facilitates exploration of microbial populations in the animal gut. However, previous studies have focused on fecal samples instead of the gastrointestinal tract. In this study, we compared the microbiota diversity and composition of intestinal contents of weaned piglets treated with Lactobacillus reuteri or chlortetracycline (aureomycin) using high-throughput sequencing. Nine weaned piglets were randomly divided into three groups and supplemented with L. reuteri, chlortetracycline, or saline for 10 days, and then the contents of three intestinal segments (jejunum, colon, and cecum) were obtained and used for sequencing of the V3–V4 hypervariable region of the 16S rRNA gene. The microbiota diversity and composition in the jejunum were different from those in the colon and cecum among the three treatments. In the jejunum, treatment with L. reuteri increased the species richness of the microbiota, as indicated by the ACE and Chao1 indexes, compared with the chlortetracycline group, in which several taxa were eliminated. In the colon and cecum, relative abundances of the phylum Firmicutes and the genus Prevotella were higher in the chlortetracycline group than in the other groups. Distances between clustered samples revealed that the L. reuteri group was closer to the chlortetracycline group than the control group for jejunum samples, while colon and cecum samples of the L. reuteri group were clustered with those of the control group. This study provides fundamental knowledge for future studies such as the development of alternatives to antibiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amato KR, Yeoman CJ, Kent A, Righini N, Carbonero F, Estrada A, Gaskins HR, Stumpf RM, Yildirim S, Torralba M, Gilllis M, Wilson BA, Nelson KE, White BA, Leigh SR (2013) Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes. The ISME Journal 7:1344–1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arumugam M, Raes J, Pelletier E, Paslier D, Yamada T, Mende DR, Fernandes GR, Tap J, Bruls T, Batto JM, Bertalan M, Borruel N, Casellas F, Fernandez L, Gautier L, Hansen T, Hattori M, Hayashi T, Kleerebezem M, Kurokawa K, Leclerc M, Levenez F, Manichanh C, Nielsen HB, Nielsen T, Pons N, Poulain J, Qin J, Sicheritz-Ponten T, Tims S, Torrents D, Ugarte E, Zoetendal EG, Wang J, Guarner F, Pedersen O, de Vos WM, Brunak S, Dore J, MetaHIT Consortium, Antolin M, Artiguenave F, Blottiere HM, Almeida M, Brechot C, Cara C, Chervaux C, Cultrone A, Delorme C, Denariaz G, Dervyn R, Foerstner KU, Friss C, van de Guchte M, Guedon E, Haimet F, Huber W, van Hylckama-Vlieg J, Jamet A, Juste C, Kaci G, Knol J, Lakhdari O, Layec S, Le Roux K, Maguin E, Merieux A, Melo Minardi R, Mrini C, Muller J, Oozeer R, Parkhill J, Renault P, Rescigno M, Sanchez N, Sunagawa S, Torrejon A, Turner K, Vandemeulebrouck G, Varela E, Winogradsky Y, Zeller G, Weissenbach J, Ehrlich SD, Bork P (2011) Enterotypes of the human gut microbiome. Nature 473(7346):174–180. doi:10.1038/nature 09944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cecilia J, Sonja L, Charlotta E, Janet KJ (2007) Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J 1:56–66

    Article  CAS  Google Scholar 

  • Dibner JJ, Richards JD (2005) Antibiotic growth promoters in agriculture: history and mode of action. Poult Sci 84:634–643

    Article  CAS  PubMed  Google Scholar 

  • Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA (2005) Diversity of the human intestinal microbial flora. Science 308(5728):1635–1638

    Article  PubMed  PubMed Central  Google Scholar 

  • Feeding Standard of Swine (2004) China Agriculture Press, Beijing, China

  • Guo X, Xia X, Tang R, Zhou J, Zhao H, Wang K, Wang K (2008) Development of a real-time PCR method for Firmicutes and Bacteroidetes in faeces and its application to quantify intestinal population of obese and lean pigs. Lett Appl Microbiol 47:367–373

    Article  CAS  PubMed  Google Scholar 

  • Hayashi H, Shibata K, Sakamoto M, Tomita S, Benno Y (2007) Prevotella copri sp. nov. and Prevotella stercorea sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 57:941–946

    Article  CAS  PubMed  Google Scholar 

  • Hildebrand F, Nguyen T, Brinkman B, Yunta RG, Cauwe B, Vandenabeele P, Liston A, Raes J (2013) Inflammation associated enterotypes, host genotype, cage and inter-individual effects drive gut microbiota variation in common laboratory mice. Genome Biol 14:R4

    Article  PubMed  PubMed Central  Google Scholar 

  • Hou C, Liu H, Zhang J, Zhang S, Yang F, Zeng X, Thacker P, Zhang G, Qiao S (2015) Intestinal microbiota succession and immunomodulatory consequences after introduction of Lactobacillus reuteri I5007 in neonatal piglets. PLoS One 10(3):e0119505. doi:10.1371/journal.pone.0119505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu CH, Song ZH, Xiao K, Song J, Jiao LF, Ke YL (2014) Zinc oxide influences intestinal integrity, the expressions of genes associated with inflammation, and TLR4-myeloid differentiation factor 88 signaling pathways in weanling pigs. Innate Immun 20(5):478–486

    Article  CAS  PubMed  Google Scholar 

  • Isaacson R, Kim HB (2012) The intestinal microbiome of the pig. Anim Health Res Rev 13:100–109

    Article  PubMed  Google Scholar 

  • Jiao LF, Song ZH, Ke YL, Xiao K, Hu CH, Shi B (2014) Cello-oligosaccharide influences intestinal microflora, mucosal architecture and nutrient transport in weaned pigs. Anim Feed Sci Tech 195:85–91

    Article  CAS  Google Scholar 

  • Kim HB, Borewicz K, White BA, Singer RS, Sreevatsan S, Tu ZJ, Isaacson RE (2012) Microbial shifts in the swine distal gut in response to the treatment with antimicrobial growth promoter, tylosin. PNAS 109(38):15485–15490. doi:10.1073/pnas.1205147109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knecht H, Neulinger SC, Heinsen FA, Knecht C, Schilhabel A, Schmitz RA, Zimmermann A, dos Santos VM, Ferrer M, Rosenstiel PC, Schreiber S, Friedrichs AK, Ott SJ (2014) Effects of beta-lactam antibiotics and fluoroquinolones on human gut microbiota in relation to Clostridium difficile associated diarrhea. PLoS One 9(2):e89417. doi:10.1371/journal.pone.0089417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol 79:5112–5120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamendella R, Domingo JW, Ghosh S, Martinson J, Oerther DB (2011) Comparative fecal metagenomics unveils unique functional capacity of the swine gut. BMC Microbiol 11:103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444:1022–1023

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Zhang J, Zhang S, Yang F, Thacker PA, Zhang G, Qiao S, Ma X (2014) Oral administration of Lactobacillus fermentum I5007 favors intestinal development and alters the intestinal microbiota in formula-fed piglets. J Agric Food Chem 62:860–866

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Ji HF, Zhang DY, Wang SX, Wang J, Shan DC, Wang YM (2015) Effects of Lactobacillus brevis preparation on growth performance, fecal microflora and serum profile in weaned pigs. Livest Sci 178:251–254

    Article  Google Scholar 

  • Lu XM, Lu PZ, Zhang H (2014) Bacterial communities in manures of piglets and adult pigs bred with different feeds revealed by 16S r DNA 454 pyrosequencing. Appl Microbiol Biotech 98:2657–2665

    Article  CAS  Google Scholar 

  • Manichanh C, Reeder J, Gibert P, Varela E, Llopis M, Antolin M, Guigo R, Knight R, Guarner F (2010) Reshaping the gut microbiome with bacterial transplantation and antibiotic intake. Genome Res 20:1411–1419. doi:10.1101/gr.107987.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molbak L, Klitgaard K, Jensen TK, Fossi M, Boye M (2006) Identification of a novel, invasive, not-yet-cultivated Treponema sp. in the large intestine of pigs by PCR amplification of the 16S rRNA gene. J Clin Microbiol 44:4537–4540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niu Q, Li P, Hao SS, Zhang YQ, Kim SW, Li HZ, Ma X, Gao S, He LC, WJ W, Huang XG, Hua JD, Zhou B, Huang RH (2015) Dynamic distribution of the gut microbiota and the relationship with apparent crude fiber digestibility and growth stages in pigs. Sci Rep 5:9938. doi:10.1038/srep09938

  • Oberauner L, Zachow C, Lackner S, Hogenauer C, Smolle KH, Berg G (2013) The ignored diversity: complex bacterial communities in intensive care units revealed by 16S pyrosequencing. Sci Rep 3 doi:10.1038/srep01413

  • Pajarillo EA, Chae JP, Balolong MP, Kim HB, Seo KS, Kang DK (2014) Pyrosequencing-based analysis of fecal microbial communities in three purebred pig lines. J Microbiol 52(8):646–651

    Article  PubMed  Google Scholar 

  • Riboulet-Bisson E, Sturme MH, Jeffery IB, Riboulet-Bisson E, Sturme MH, Jeffery IB, O'Donnell MM, Neville BA, Forde BM, Claesson MJ, Harris H, Gardiner GE, Casey PG, Lawlor PG, O'Toole PW, Ross RP (2012) Effect of Lactobacillus salivarius bacteriocin Abp118 on the mouse and pig intestinal microbiota. PLoS One 7(2):e31113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sattler VA, Bayer K, Schatzmayr G, Haslberger AG, Klose V (2015) Impact of a probiotic, inulin, or their 489 combination on the piglets’ microbiota at different intestinal locations. Benef Microbes 6:473–483

    Article  CAS  PubMed  Google Scholar 

  • Sears CL (2005) Adynamic partnership: celebrating our gut flora. Anaerobe 11:247–251

    Article  PubMed  Google Scholar 

  • Schwarz S, Chaslus-Dancla E (2001) Use of antimicrobials in veterinary medicine and mechanisms of resistance. Vet Res 32:201–225

    Article  CAS  PubMed  Google Scholar 

  • Shanahan F (2002) The host-microbe interface within the gut. Best Pract. Res. Clin Gastroenterol 16:915–931

    Google Scholar 

  • Simpson JM, McCracken VJ, White BA, Gaskins HR, Mackie RI (1999) Application of denaturing gradient gel electrophoresis for the analysis of the porcine gastrointestinal microbiota. J Microbiol Methods 6:167–179

    Article  Google Scholar 

  • Su Y, Yao W, Perez-Gutierrez ON, Smidt H, Zhu WY (2008) 16S ribosomal RNA-based methods to monitor changes in the hindgut bacterial community of piglets after oral administration of Lactobacillus sobrius S1. Anaerobe 14(2):78–86

    Article  CAS  PubMed  Google Scholar 

  • Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031

    Article  PubMed  Google Scholar 

  • Uroz S, Ioannidis P, Lengelle J, Cébron A, Morin E, Buee M, Martin F (2013) Functional assays and metagenomic analyses reveals differences between the microbial communities inhabiting the soil horizons of a Norway spruce plantation. PLoS One 8:e55929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin J, Prabhakar M, Wang S, Liao SX, Peng X, He Y, Chen YR, Shan HF, Su J, Jiang YX, Zhang GX, Zhou HW (2015) Different dynamic patterns of β-lactams, quinolones, glycopeptides and macrolides on mouse gut microbial diversity. PLoS One 10(5):e0126712. doi:10.1371/journal.pone.0126712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao W, Wang Y, Liu SY, Huang JJ, Zhai ZX, He C, Ding JM, Wang J, Wanf HJ, Fan WB, Zhao HM (2015) The dynamic distribution of porcine microbiota across different ages and gastrointestinal tract segments. PLoS One 10(2):e0117441. doi:10.1371/journal.pone.0117441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was funded by a special project of the Beijing Municipal Science & Technology Commission (grant number Z141100002614002), the Modern Agro-industry Technology Research System, the Beijing Innovation Team of Swine (grant number GWZJ-2009-06), and a Scientific and Technological Innovation Ability Construction project of the Beijing Academy of Agriculture and Forestry Science (grant number KJCX20150404). We would like to thank Beijing Xiqingminfeng Farm (Beijing, China) for their assistance with these studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haifeng Ji.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures involving animals were approved by the Ethics Committee of the Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Ji, H., Liu, H. et al. Changes in the diversity and composition of gut microbiota of weaned piglets after oral administration of Lactobacillus or an antibiotic. Appl Microbiol Biotechnol 100, 10081–10093 (2016). https://doi.org/10.1007/s00253-016-7845-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7845-5

Keywords

Navigation