Skip to main content
Log in

Biosensoric potential of microbial fuel cells

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Recent progress in microbial fuel cell (MFC) technology has highlighted the potential of these devices to be used as biosensors. The advantages of MFC-based biosensors are that they are phenotypic and can function in either assay- or flow-through formats. These features make them appropriate for contiguous on-line monitoring in laboratories and for in-field applications. The selectivity of an MFC biosensor depends on the applied microorganisms in the anodic compartment where electron transfer (ET) between the artificial surface (anode) and bacterium occurs. This process strongly determines the internal resistance of the sensoric system and thus influences signal outcome and response time. Despite their beneficial characteristics, the number of MFC-based biosensoric applications has been limited until now. The aim of this mini-review is to turn attention to the biosensoric potential of MFCs by summarizing ET mechanisms on which recently established and future sensoric devices are based.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aas W, Alleman LY, Bieber E, Gladtke HJ-L, Vuokko Karlsson V, Christian Monies C (2009) Comparison of methods for measuring atmospheric deposition of arsenic, cadmium, nickel and lead. J Environ Monit 11:1276–1283

    Article  CAS  PubMed  Google Scholar 

  • Allen RM, Bennetto HP (1993) Microbial fuel-cells: electricity production of carbohydrates. Appl Biochem Biotechnol 39–40:27–40

    Article  Google Scholar 

  • Babanova S, Hubenova Y, Mitov M (2011) Influence of artificial mediators on yeast-based fuel cell performance. J Biosci Bioeng 112(4):379–387

    Article  CAS  PubMed  Google Scholar 

  • Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  • Belkin S (2003) Microbial whole-cell sensing systems of environmental pollutants. Curr Opin Microbiol 6(3):206–212

    Article  CAS  PubMed  Google Scholar 

  • Bennetto HP (1990) Electricity generation by micro-organisms. Biotechnol Educ 1(4):163–168

    CAS  Google Scholar 

  • Bond DR, Holmes DE, Tender LM, Lovley DR (2002) Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295(5554):483–485

    Article  CAS  PubMed  Google Scholar 

  • Chang S, Moon H, Jang JK, Kim BH (2005) Improvement of a microbial fuel cell performance as a BOD sensor using respiratory inhibitors. Biosens Bioelectron 20(9):1856–1859

    Article  CAS  PubMed  Google Scholar 

  • Changa IS, Janga JK, Gila GC, Kima M, Kima HY, Chob BW, Kim BH (2004) Continuous determination of biochemical oxygen demand using microbial fuel cell type biosensor. Biosens Bioelectron 19:607–613

    Article  Google Scholar 

  • Chaudhuri SK, Lovley DR (2003) Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat Biotechnol 21(10):1229–1232

    Article  CAS  PubMed  Google Scholar 

  • Chiao M, Lam KB, Lin LW (2006) Micromachined microbial and photosynthetic fuel cells. J Micromech Microeng 16(12):2547–2553

    Article  CAS  Google Scholar 

  • Choi S (2015) Microscale microbial fuel cells: advances and challenges. Biosens Bioelectron 69:8–25

    Article  CAS  PubMed  Google Scholar 

  • Choi S, Lee HS, Yang Y, Parameswaran P, Torres CI, Rittmann BE, Chae J (2011) A μL-scale micromachined microbial fuel cell having high power density. Lab Chip 11(6):1110–1117

    Article  CAS  PubMed  Google Scholar 

  • Crittenden SR, Sund CJ, Summer JJ (2006) Mediated electron transfer from bacteria to a gold electrode via self-assembled monolayer. Langmuir 22(23):9473–9476

    Article  CAS  PubMed  Google Scholar 

  • Dai C, Choi S (2013) Technology and applications of microbial biosensors. Open J Appl Biosens 2:83–93

    Article  Google Scholar 

  • D’Souza SF (2001) Microbial biosensors. Biosens Bioelectron 16(6):337–353

    Article  PubMed  Google Scholar 

  • Dumas C, Mollica A, Féron D, Basséguy R, Etcheverry L, Bergel A (2008) Marine microbial fuel cell: use of stainless steel electrodes as anode and cathode materials. Electrochim Acta 53(2):468–473

    Article  Google Scholar 

  • ElMekawy A, Hegab HM, Benetton XD, Pant D (2013) Internal resistance of microfluidic microbial fuel cell: challenges and potential opportunities. Bioresour Technol 142:672–682

    Article  CAS  PubMed  Google Scholar 

  • Ghanapriya K, Kalaichelvan PT (2012) Electricity generation from bacteria Staphylococcus aureus and Enterobacteriaceae bacterium using microbial fuel cell - an alternative source of energy and its use application. Int J Curr Sci:87–93

  • Gu T (2012) Methods and devices for the detection of biofilms. World Intellectual Property Organization: Patent WO2012/149487

  • Hernandez ME, Newman DK (2001) Extracellular electrontransfer. Cell Mol Life Sci 58:1562–1571

    Article  CAS  PubMed  Google Scholar 

  • Hou HJ, Li L, Cho Y, de Figueiredo P, Han A (2009) Microfabricated microbial fuel cell arrays reveal electrochemically active microbes. PLoS One 4(8):e6570

    Article  PubMed  PubMed Central  Google Scholar 

  • Hung DQ, Nekrassova O, Compton RG (2004) Analytical methods for inorganic arsenic in water: a review. Talanta 64:269–277

    Article  CAS  PubMed  Google Scholar 

  • Janknecht P, Melo LF (2003) Online biofilm monitoring. Rev Environ Sci Biotechnol 2:269–283

    Article  Google Scholar 

  • Jiang YB, Denga H, Sunb DM, Zhong WH (2015) Electrical signals generated by soil microorganisms in microbial fuel cells respond linearly to soil Cd2+ pollution. Geoderma 255–256:35–41

    Article  Google Scholar 

  • Kargi F, Eker S (2007) Electricity generation with simultaneous wastewater treatment by a microbial fuel cell (MFC) with Cu and Cu–Au electrodes. J Chem Technol Biotechnol 82(7):658–662

    Article  CAS  Google Scholar 

  • Kaur A, Kim JR, Michie I, Dinsdale RM, Guwy AJ, Premier GC (2013) Microbial fuel cell type biosensor for specific volatile fatty acids using acclimated bacterial communities. Biosens Bioelectron 47:50–55

    Article  CAS  PubMed  Google Scholar 

  • Kim BH, Kim HJ, Hyun MS, Park DH (1999) Direct electrode reaction of Fe (III)-reducing bacterium, Shewanella putrifaciens. J Microbiol Biotechnol 9:127–131

    Google Scholar 

  • Kim N, Choi Y, Jung S, Kim S (2000) Effect of initial carbon sources on the performance of microbial fuel cells containing Proteus vulgaris. Biotechnol Bioeng 70(1):109–114

    Article  CAS  PubMed  Google Scholar 

  • Kim P, Kwon KW, Park MC, Lee SH, Kim SM, Suh KY (2008) Soft lithography for microfluidics: a review. Biochip J 2(1):1–11

    Google Scholar 

  • Kueh CSW, Lam JYC (2008) Monitoring of toxic substances in the Hong Kong marine environment. Mar Pollut Bull 57:744–757

    Article  CAS  PubMed  Google Scholar 

  • Kumlanghan A, Liu J, Thavarungkul P, Kanatharana P, Mattiasson B (2007) Microbial fuel cell-based biosensor for fast analysis of biodegradable organic matter. Biosens Bioelectron 22:2939–2944

    Article  CAS  PubMed  Google Scholar 

  • Larminie J, Dicks A (2000) Fuel cell systems explained. Wiley, Chichester, p. 308

    Google Scholar 

  • Li WW, Sheng GP, Liu XW, Yu HQ (2011) Recent advances in the separators for microbial fuel cells. Bioresour Technol 102:244–252

    Article  CAS  PubMed  Google Scholar 

  • Li X, Liu L, Liu T, Yuan T, Zhang W, Li F, Zhou S, Li Y (2013) Electron transfer capacity dependence of quinone-mediated Fe(III) reduction and current generation by Klebsiella pneumoniae L17. Chemosphere 92(2):218–224

    Article  CAS  PubMed  Google Scholar 

  • Liang P, Huang X, Fan MZ, Cao XX, Wang C (2007) Composition and distribution of internal resistance in three types of microbial fuel cells. Appl Microbiol Biotechnol 77(3):551–558

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Qiao Y, Guo CX, Lim S, Song H, Li CM (2012) Graphene/carbon cloth anode for high-performance mediatorless microbial fuel cells. Bioresour Technol 114:275–280

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Liu J, Zhang S, Xing XH, Su Z (2011) Microbial fuel cell based biosensor for in situ monitoring of anaerobic digestion process. Bioresour Technol 102(22):10221–10229

    Article  CAS  PubMed  Google Scholar 

  • Logan BE, Hamelers B, Rozendal R, Schroder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40:5181–5192

    Article  CAS  PubMed  Google Scholar 

  • Logan B, Cheng S, Watson V, Estadt G (2007) Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environ Sci Technol 41(9):3341–3346

    Article  CAS  PubMed  Google Scholar 

  • Logan B (2009) Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Microbiol 7:375–381

    Article  CAS  PubMed  Google Scholar 

  • Lorenzo MD, Curtisa TP, Heada IM, Scott K (2009) A single-chamber microbial fuel cell as a biosensor for wastewaters. Water Res 43:3145–3154

    Article  PubMed  Google Scholar 

  • Madigan MT, Martink JM, Parker J (1999) Brock biology of microorganisms, 8th edn. Prentice Hall International, Inc., Upper Saddle River

    Google Scholar 

  • Modin O, Wilen B (2012) A novel bioelectrochemical BOD sensor operating with voltage input. Water Res 46(18):6113–6120

    Article  CAS  PubMed  Google Scholar 

  • Ouitrakul S, Sriyudthsak M, Charojrochkul S, Kakizono T (2007) Impedance analysis of bio-fuel cell electrodes. Biosens Bioelectron 23(5):721–727

    Article  CAS  PubMed  Google Scholar 

  • Park DH, Zeikus JG (2000) Electricity generation in microbial fuel cells using neutral red as an electronophore. Appl Environ Microbiol 66(4):1292–1295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park HS, Kim BH, Kim HS, Kim HJ, Kim GJ, Kim M, Chang IS, Park YK, Chang HI (2001) A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell. Anaerobe 7:297–306

    Article  CAS  Google Scholar 

  • Park IH, Gnana KG, Kim AR, Kim P, Suk NK (2011) Microbial electricity generation of diversified carbonaceous electrodes under variable mediators. Bioelectrochemistry 80:99–104

    Article  CAS  PubMed  Google Scholar 

  • Peixoto L, Min B, Martins G, Brito AG, Kroff P, Parpot I, Angelidaki I, Nogueira R (2011) In situ microbial fuel cell-based biosensor for organic carbon. Bioelectrochemistry 81(2):99–103

    Article  CAS  PubMed  Google Scholar 

  • Pirbadian S, Barchinger SE, Leung KM, Byun HS, Jangir Y, Bouhenni RA, Reed SB, Romine MF, Saffarini DA, Shi L, Gorby YA, Golbeck JH, El-Naggar MY (2014) Shewanella oneidensis MR-1 are outer membrane and periplasmic extensions of the extracellular electron transport components. Biophys J 111(35):12883–12888

    CAS  Google Scholar 

  • Potter MC (1911) Electrical effects accompanying the decomposition of organic compounds. Proc R Soc London, Ser B 84:260–276

    Article  Google Scholar 

  • Qian F, Baum M, Gu Q, Morse DE (2009) A 1.5 μL microbial fuel cell for on-chip bioelectricity generation. Lab Chip 9(21):3076–3081

    Article  CAS  PubMed  Google Scholar 

  • Qian F, He Z, Thelen MP, Li Y (2011) A microfluidic microbial fuel cell fabricated by soft lithography. Bioresour Technol 102(10):5836–5840

    Article  CAS  PubMed  Google Scholar 

  • Quek SB, Cheng L, Cord-Ruwisch R (2015) Microbial fuel cell biosensor for rapid assessment of assimilable organic carbon under marine conditions. Water Res 77:64–71

    Article  CAS  PubMed  Google Scholar 

  • Rabaey K, Boon N, Siciliano SD, Verhaege M, Verstraete W (2004) Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl Environ Microbiol 70(9):5373–5382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rabaey K, Boon N, Höfte M, Verstraete W (2005) Microbial phenazine production enhances electron transfer in biofuel cells. Environ Sci Technol 39(9):3401–3408

    Article  CAS  PubMed  Google Scholar 

  • Rahimnejad M, Najafpour GD, Ghoreyshi AA, Talebnia F, Premier GC, Bakeri G, Kim JR, Oh SE (2012) Thionine increases electricity generation from microbial fuel cell using Saccharomyces cerevisiae and exoelectrogenic mixed culture. J Microbiol 50(4):575–580

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen M, Minteer SD (2015) Long-term arsenic monitoring with an Enterobacter cloacae microbial fuel cell. Bioelectrochemistry 106:207–212

    Article  CAS  PubMed  Google Scholar 

  • Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR (2005) Extracellular electron transfer via microbial nanowires. Nature 435(7045):1098–1101

    Article  CAS  PubMed  Google Scholar 

  • Rong XM, Huang QY, Jiang DH, Cai P, Liang W (2007) Isothermalmicrocalorimetry: a review of applications in soil and environmental sciences. Pedosphere 17:137–145

    Article  CAS  Google Scholar 

  • Schneider G, Czeller M, Rostás V, Kovács T (2015) Microbial fuel cell-based diagnostic platform to reveal antibacterial effect of beta-lactam antibiotics. Enzym Microb Technol 73-74:59–64

    Article  CAS  Google Scholar 

  • Scott K, Yu EH (2016) Microbial electrochemical and fuel cells: fundamentals and applications. Woodhead Publishing Series in Energy: Number 88., Woodhead Publishing Ltd

  • Schröder U (2007) Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Phys Chem Chem Phys 9(21):2619–2629

    Article  PubMed  Google Scholar 

  • Siu CPB, Chiao M (2008) A microfabricated PDMS microbial fuel cell. J Microelectromech Syst 17(6):1329–1341

    Article  CAS  Google Scholar 

  • Szöllősi A, Rezessy-Szabó JM, Hoschke Á, Nguyen QD (2015) Novel method for screening microbes for application in microbial fuel cell. Bioresour Technol 179:123–127

    Article  PubMed  Google Scholar 

  • Taskan E, Özkaya B, Hasar H (2014) Effect of different mediator concentrations on power generation in MFC using Ti-TiO2. Electron Int J Energy Sci 4:334–497

    Google Scholar 

  • ter Heijne A, Hamelers HVM, Saakes M, Buisman CJN (2008) Performance of non-porous graphite and titanium-based anodes in microbial fuel cells. Electrochim Acta 53(18):5697–5703

    Article  Google Scholar 

  • Wang X, Cheng S, Feng Y, Merrill MD, Saito T, Logan BE (2009) Use of carbon mesh anodes and the effect of different pretreatment methods on power production in microbial fuel cells. Environ Sci Technol 43(17):6870–6874

    Article  CAS  PubMed  Google Scholar 

  • Wang HY, Bernarda A, Huang CH, Lee DJ, Chang JS (2011) Micro-sized microbial fuel cell: a mini-review. Bioresour Technol 102(1):235–243

    Article  CAS  PubMed  Google Scholar 

  • Webster DP, TerAvest MA, Doud DFR, Chakravorty A, Holmes EC, Radens CM, Sureka S, Gralnick JA, Angenent LT (2014) An arsenic-specific biosensor with genetically engineered Shewanella oneidensis in a bioelectrochemical system. Biosens Bioelectron 62:320–324

    Article  CAS  PubMed  Google Scholar 

  • Wegener G, Krukenberg V, Riedel D, Tegetmeyer HE, Boetius A (2015) Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria. Nature 526:587–590

    Article  CAS  PubMed  Google Scholar 

  • Weyers A, Sokull-Kluttgen B, Baraibar-Fentanes J, Vollmer G (2000) Acute toxicity data: a comprehensive comparison of results of fish, Daphnia, and algae tests with new substances notified in the European Union. Environ Toxicol Chem 19:1931–1933

    CAS  Google Scholar 

  • Xia X, Cao XX, Liang P, Huang X, Yang SP, Zhao GG (2010) Electricity generation from glucose by a Klebsiella sp. in microbial fuel cells. Appl Microbiol Biotechnol 87(1):383–390

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Ye D, Li J, Zhu X, Liao Q, Zhang B (2015) Biofilm distribution and performance of microfluidic microbial fuel cells with different microchannel geometries. Int J Hydrog Energy 40(35):11983–11988

    Article  CAS  Google Scholar 

  • Ye D, Yang Y, Li J, Zhu X, Liao Q, Deng B, Chen R (2013) Performance of a microfluidic microbial fuel cell based on graphite electrodes. Int J Hydrog Energy 38(35):15710–15715

    Article  CAS  Google Scholar 

  • Zhang Y, Angelidaki I (2012) A simple and rapid method for monitoring dissolved oxygen in water with a submersible microbial fuel cell (SBMFC). Biosens Bioelectron 38:189–194

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Cui C, Chen S, Ai X, Yang H, Shen P, Peng Z (2006) A novel mediatorless microbial fuel cell based on direct biocatalysis of Escherichia coli. Chem Commun 21:2257–2259

    Article  Google Scholar 

  • Zhuwei D, Haoran L, Tingyue G (2007) A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnol Adv 25:464–482

    Article  Google Scholar 

  • Zhu X, Logan BE (2014) Copper anode corrosion affects power generation in microbial fuel cells. J Chem Technol Biotechnol 89(3):471–474

    Article  CAS  Google Scholar 

  • Ziaie B, Baldi A, Lei M, Gu YD, Siegel RA (2004) Hard and soft micromachining for BioMEMS: review of techniques and examples of applications in microfluidics and drug delivery. Adv Drug Deliv Rev 56(2):145–172

    Article  CAS  PubMed  Google Scholar 

  • Zou YJ, Sun LX, Xu F, Yang LN (2007) E. coli microbial fuel cell using new methylene blue as electron mediator. Chem J Chin Univ 28:510–513

    CAS  Google Scholar 

Download references

Acknowledgments

The present work was partly supported by the Hungarian Government (MFCDiagn—TECH_08-A1-2008-0279) and the University of Pécs: PTE ÁOK-KA-2013/23.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to György Schneider.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

The present scientific contribution is dedicated to the 650th anniversary of the foundation of the University of Pécs, Hungary.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schneider, G., Kovács, T., Rákhely, G. et al. Biosensoric potential of microbial fuel cells. Appl Microbiol Biotechnol 100, 7001–7009 (2016). https://doi.org/10.1007/s00253-016-7707-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7707-1

Keywords

Navigation