Skip to main content
Log in

Novel cyclohexane monooxygenase from Acidovorax sp. CHX100

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Acidovorax sp. CHX100 has a remarkable ability for growth on short cycloalkanes (C5–C8) as a sole source of carbon and energy under aerobic conditions via an uncharacterized mechanism. Transposon mutagenesis of Acidovorax sp. CHX100 revealed a novel cytochrome P450 monooxygenase (CYP450chx) which catalyzed the transformation of cyclohexane to cyclohexanol. Primer walking methods categorized CYP450chx as cytochrome P450 class I taking into account its operon structure: monooxygenase, FAD oxidoreductase, and ferredoxin. CYP450chx was successfully cloned and expressed in Escherichia coli JM109. The activity of CYP450chx was demonstrated by means of the indole co-oxidation. Biotransformation capability of CYP450chx was confirmed through the catalysis of cycloalkanes (C5–C8) to their respective cyclic alcohols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alexander A (2010) Bioremediation and biocatalysis with Polaromonas strain JS666. PhD thesis, University of Iowa

  • Anderson MS, Hall R, Griffin M (1980) Microbial metabolism of alicyclic hydrocarbons: cyclohexane catabolism by a pure strain of Pseudomonas sp. J Gen Microbiol 120:89–94. doi:10.1099/00221287-120-1-89

    CAS  Google Scholar 

  • Blanchette BN, Singh BR (2002) Induction of glutathione-S-transferase in the Northern quahog Mercenaria mercenaria after exposure to the polychlorinated biphenyl(PCB) mixture Aroclor 1248. J Protein Chem 21:489–494. doi:10.1023/A:1022872619925

    Article  CAS  PubMed  Google Scholar 

  • Brzostowicz PC, Walters DM, Jackson RE, Halsey KH, Ni H, Rouviere PE (2005) Proposed involvement of a soluble methane monooxygenase homologue in the cyclohexane-dependent growth of a new Brachymonas species. Environ Microbiol 7:179–190. doi:10.1111/j.1462-2920.2004.00681.x

    Article  CAS  PubMed  Google Scholar 

  • Cheng Q, Thomas SM, Kostichka K, Valentine JR, Nagarajan V (2000) Genetic analysis of a gene cluster for cyclohexanol oxidation in Acinetobacter sp. strain SE19 by in vitro transposition. J Bacteriol 17:4744–4751. doi:10.1128/JB.182.17.4744-4751.2000

    Article  Google Scholar 

  • Farinas ET, Schwaneberg U, Glieder A, Frances H (2001) Directed evolution of a cytochrome P450 monooxygenase for alkane oxidation. Adv Synth Catal 343:601–606. doi:10.1002/1615-4169(200108)343:6

    Article  CAS  Google Scholar 

  • Fortin PD, Horsman GP, Yang HM, Eltis LD (2006) A glutathione S-transferase catalyzes the dehalogenation of inhibitory metabolites of polychlorinated biphenyls. J Bacteriol 188:4424–4430. doi:10.1128/JB.01849-05

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fujii T, Narikawa T, Takeda K, Kato J (2004) Biotransformation of various alkanes using the Escherichia coli expressing an alkane hydroxylase system from Gordonia sp. TF6. Biosci Biotechnol Biochem 68:2171–2177. doi:10.1271/bbb.68.2171

    Article  CAS  PubMed  Google Scholar 

  • Kawakami N, Shoji O, Watanabe Y (2011) Use of perfluorocarboxylic acids to trick cytochrome P450BM3 into initiating the hydroxylation of gaseous alkanes. Angew Chem Int Ed 50:5315–5318. doi:10.1002/anie.201007975

    Article  CAS  Google Scholar 

  • Kim KK, Lee KC, Oh HM, Kim MJ, Eom MK, Lee JS (2008) Arthrobacter defluvii sp. nov., 4-chlorophenol-degrading bacteria isolated from sewage. Int J Syst Evol Microbiol 58:1916–1921. doi:10.1099/ijs.0.65550-0

    Article  CAS  PubMed  Google Scholar 

  • Klerk H, van der Linden AC (1974) Bacterial degradation of cyclohexane participation of a co-oxidation reaction. Ant van Leeuw 40:7–15. doi:10.1007/BF00394548

    Article  Google Scholar 

  • Kubota M, Nodate M, Yasumoto-Hirose M, Uchiyama T, Kagami O, Shizuri Y, Misawa N (2005) Isolation and functional analysis of cytochrome P450 CYP153A genes from various environments. Biosci Biotechnol Biochem 69:2421–2430. doi:10.1271/bbb.69.2421

    Article  CAS  PubMed  Google Scholar 

  • Kurth EG, Doughty DM, Bottomley PJ, Arp DJ, Sayavedra-Soto LA (2008) Involvement of BmoR and BmoG in n-alkane metabolism in Pseudomonas butanovora. Microbiology 154:139–147. doi:10.1099/mic.0.2007/012724-0

    Article  CAS  PubMed  Google Scholar 

  • Lee EH, Cho KS (2008) Characterization of cyclohexane and hexane degradation by Rhodococcus sp. EC1. Chemosphere 71:1738–1744. doi:10.1016/j.chemosphere.2007.12.009

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Oh H, Kim O (2013) Isolation and characterization of volatile organic compounds-degrading Bacillus strains from Loess. J Environ Protect 4:50–57. doi:10.4236/jep.2013.44A007

    Article  CAS  Google Scholar 

  • Liu L, Schmid RD, Urlacher VB (2006) Cloning, expression, and characterization of a self-sufficient cytochrome P450 monooxygenase from Rhodococcus ruber DSM 44319. Appl Microbiol Biotechnol 72:876–882. doi:10.1007/s00253-006-0355-0

    Article  CAS  PubMed  Google Scholar 

  • Maier T, Förster HH, Asperger O, Hahn U (2001) Molecular characterization of the 56-kDa CYP153 from Acinetobacter sp. EB104. Biochem Biophys Res Commun 286:652–658. doi:10.1006/bbrc.2001.5449

    Article  CAS  PubMed  Google Scholar 

  • Marks ME, Castro-Rojas CM, Teiling C, Du L, Kapatral V, Walunas TL, Crosson S (2010) The genetic basis of laboratory adaptation in Caulobacter crescentus. J Bacteriol 192:3678–3688. doi:10.1128/JB.00255-10

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Masuda H (2009) Identification and characterization of monooxygenase enzymes involved in 1,4-dioxane degradation in Pseudonocardia sp. strain env478, Mycobacterium sp. strain env421, and Nocardia sp. strain env425. PhD thesis, University of New Jersey

  • Mattes TE, Alexander AK, Richardson PM, Munk AC, Han CS, Stothard P, Coleman NV (2008) The genome of Polaromonas sp. strain JS666: insights into the evolution of a hydrocarbon- and xenobiotic-degrading bacterium, and features of relevance to biotechnology. Appl Environ Microbiol 74:6405–6416. doi:10.1128/AEM.00197-08

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McClay K, Boss C, Keresztes I, Steffan RJ (2005) Mutations of toluene-4-monooxygenase that alter regiospecificity of indole oxidation and lead to production of novel indigoid pigments. Appl Environ Microbiol 71:5476–5483. doi:10.1128/AEM.71.9.5476-5483.2005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Onaca C, Kieninger M, Engesser K-H, Altenbuchner J (2007) Degradation of alkyl methyl ketones by Pseudomonas veronii MEK700. J Bacteriol 189:3759–3767. doi:10.1128/JB.01279-06

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Opere BO, Obayori OS, Raji AA (2013) Degradation of cyclohexane and cyclohexanone by Bacillus lentus strain LP32. Afr J Biotechnol 12:6632–6635. doi:10.5897/AJB2013.13137

    Article  CAS  Google Scholar 

  • Perry JJ (1984) Microbial metabolism of cyclic alkanes. In: Atlas RM (ed) Petroleum microbiology. Macmillan, New York, pp 61–67

    Google Scholar 

  • Rouviere PE, Chen MW (2003) Isolation of Brachymonas petroleovorans CHX, a novel cyclohexane-degrading β-proteobacterium. FEMS Microbiol Lett 227:101–106. doi:10.1016/S0378-1097(03)00655-4

    Article  CAS  PubMed  Google Scholar 

  • Salamanca D, Engesser KH (2014) Isolation and characterization of two novel strains capable of using cyclohexane as carbon source. Environ Sci Pollut Res Int 21:12757–12766. doi:10.1007/s11356-014-3206-z

    Article  CAS  PubMed  Google Scholar 

  • Scanlan J, Dumont MG, Murrell JC (2009) Involvement of MmoR and MmoG in the transcriptional activation of soluble methane monooxygenase genes in Methylosinus trichosporium OB3b. FEMS Microbiol Lett 301:181–187. doi:10.1111/j.1574-6968.2009.01816.x

    Article  CAS  PubMed  Google Scholar 

  • Stirling LA, Watkinson RJ (1977) Microbial metabolism of alicyclic hydrocarbons: isolation and properties of a cyclohexane-degrading bacterium. J Gen Microbiol 99:119–125. doi:10.1099/00221287-99-1-119

    Article  CAS  Google Scholar 

  • Strunk N (2008) Der Abbau von Fluorbenzol und seinen Homologen durch Burkholderia fungorum FLU 100. Biologische Grundlagen und Anwendung in der Abluftreinigung. PhD thesis, University of Stuttgart

  • Trower MK, Buckland MB, Higgins R, Griffin M (1985) Isolation and characterization of a cyclohexane-metabolizing Xanthobacter sp. Appl Environ Microbiol 49:1282–1289. doi:10.4236/jep.2013.44A007

    CAS  PubMed Central  PubMed  Google Scholar 

  • U.S. Environmental Protection Agency (EPA) (1994) Chemical summary for cyclohexane. Washington D.C.

  • van Beilen JB, Funhoff EG (2005) Expanding the alkane oxygenase toolbox: new enzymes and applications. Curr Opin Biotech 16:308–314. doi:10.1016/j.copbio.2005.04.005

    Article  PubMed  Google Scholar 

  • van Beilen JB, Holtackers R, Luscher D, Bauer U, Witholt B, Duetz WA (2005) Biocatalytic production of perillyl alcohol from limonene by using a novel Mycobacterium sp. cytochrome P450 alkane hydroxylase expressed in Pseudomonas putida. Appl Environ Microbiol 71:1737–1744. doi:10.1128/AEM.71.4.1737-1744.2005

    Article  PubMed Central  PubMed  Google Scholar 

  • Warburton EJ, Magor AM, Trower MK, Griffin M (1990) Characterization of cyclohexane hydroxylase; involvement of a cytochrome P-450 system from a cyclohexane grown Xanthobacter sp. FEMS Microbiol Lett 66:5–9. doi:10.1111/j.1574-6968.1990.tb03963.x

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Josef Altenbuchner (Institute of Industrial Genetics—University of Stuttgart) for kindly providing the strain E. coli S17.1 as well as the pCro2a transposon mutagenesis vector.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Dobslaw.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salamanca, D., Karande, R., Schmid, A. et al. Novel cyclohexane monooxygenase from Acidovorax sp. CHX100. Appl Microbiol Biotechnol 99, 6889–6897 (2015). https://doi.org/10.1007/s00253-015-6599-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6599-9

Keywords

Navigation