Skip to main content
Log in

Reconstruction of the carnitine biosynthesis pathway from Neurospora crassa in the yeast Saccharomyces cerevisiae

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Industrial synthesis of l-carnitine is currently performed by whole-cell biotransformation of industrial waste products, mostly d-carnitine and cronobetaine, through specific bacterial species. No comparable system has been established using eukaryotic microorganisms, even though there is a significant and growing international demand for either the pure compound or carnitine-enriched consumables. In eukaryotes, including the fungus Neurospora crassa, l-carnitine is biosynthesized through a four-step metabolic conversion of trimethyllysine to l-carnitine. In contrast, the industrial yeast, Saccharomyces cerevisiae lacks the enzymes of the eukaryotic biosynthesis pathway and is unable to synthesize carnitine. This study describes the cloning of all four of the N. crassa carnitine biosynthesis genes and the reconstruction of the entire pathway in S. cerevisiae. The engineered yeast strains were able to catalyze the synthesis of l-carnitine, which was quantified using hydrophilic interaction liquid chromatography electrospray ionization mass spectrometry (HILIC-ESI-MS) analyses, from trimethyllysine. Furthermore, the yeast threonine aldolase Gly1p was shown to effectively catalyze the second step of the pathway, fulfilling the role of a serine hydroxymethyltransferase. The analyses also identified yeast enzymes that interact with the introduced pathway, including Can1p, which was identified as the yeast transporter for trimethyllysine, and the two yeast serine hydroxymethyltransferases, Shm1p and Shm2p. Together, this study opens the possibility of using an engineered, carnitine-producing yeast in various industrial applications while providing insight into possible future strategies aimed at tailoring the production capacity of such strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aouida M, Rubio-Texeira M, Rubio Texeira M, Thevelein JM, Poulin R, Ramotar D (2013) Agp2, a member of the yeast amino acid permease family, positively regulates polyamine transport at the transcriptional level. PLoS One 8:e65717. doi:10.1371/journal.pone.0065717

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Berben G, Dumont J, Gilliquet V, Bolle PA, Hilger F (1991) The YDp plasmids: a uniform set of vectors bearing versatile gene disruption cassettes for Saccharomyces cerevisiae. Yeast 7:475–477. doi:10.1002/yea.320070506

    Article  CAS  PubMed  Google Scholar 

  • Bernal V, Sevilla A, Cánovas M, Iborra JL (2007) Production of L-carnitine by secondary metabolism of bacteria. Microb Cell Fact 6:31. doi:10.1186/1475-2859-6-31

    Article  PubMed Central  PubMed  Google Scholar 

  • Bieber LL (1988) Carnitine. Annu Rev Biochem 57:261–283. doi:10.1146/annurev.bi.57.070188.001401

    Article  CAS  PubMed  Google Scholar 

  • Bonafé L, Berger MM, Que YA, Mechanick JI (2014) Carnitine deficiency in chronic critical illness. Curr Opin Clin Nutr Metab Care 17:200–209. doi:10.1097/MCO.0000000000000037

    Article  PubMed  Google Scholar 

  • Borum PR, Broquist HP (1977) Purification of S-adenosylmethionine: epsilon-N-L-lysine methyltransferase. The first enzyme in carnitine biosynthesis. J Biol Chem 252:5651–5655

    CAS  PubMed  Google Scholar 

  • Brass EP (2004) Carnitine and sports medicine: use or abuse? Ann N Y Acad Sci 1033:67–78. doi:10.1196/annals.1320.006

    Article  CAS  PubMed  Google Scholar 

  • Calabrese V, Giuffrida Stella AM, Calvani M, Butterfield DA (2006) Acetylcarnitine and cellular stress response: roles in nutritional redox homeostasis and regulation of longevity genes. J Nutr Biochem 17:73–88. doi:10.1016/j.jnutbio.2005.03.027

    Article  CAS  PubMed  Google Scholar 

  • Canelas AB, ten Pierick A, Ras C, Seifar RM, van Dam JC, van Gulik WM, Heijnen JJ (2009) Quantitative evaluation of intracellular metabolite extraction techniques for yeast metabolomics. Anal Chem 81:7379–7389. doi:10.1021/ac900999t

    Article  CAS  PubMed  Google Scholar 

  • Casey GP, Xiao W, Rank GH (1988) A convenient dominant selection marker for gene transfer in industrial strains of Saccharomyces yeast: SMRI encoded resistance to the herbicide sulfometuron methyl. J Inst Brew 94:93–97. doi:10.1002/j.2050-0416.1988.tb04564.x

    Article  CAS  Google Scholar 

  • Chen Y, Abbate M, Tang L, Cai G, Gong Z, Wei R, Zhou J, Chen X (2014) L-Carnitine supplementation for adults with end-stage kidney disease requiring maintenance hemodialysis: a systematic review and meta-analysis. Am J Clin Nutr 99:408–422. doi:10.3945/ajcn.113.062802

    Article  CAS  PubMed  Google Scholar 

  • Chern MK, Pietruszko R (1995) Human aldehyde dehydrogenase E3 isozyme is a betaine aldehyde dehydrogenase. Biochem Biophys Res Commun 213:561–568. doi:10.1006/bbrc.1995.2168

    Article  CAS  PubMed  Google Scholar 

  • Davis RH, de Serres FJ (1970) Metabolism of amino acids and amines part A. Methods Enzymol 17:79–143. doi:10.1016/0076-6879(71)17168-17176

    Article  Google Scholar 

  • DiNicolantonio JJ, Lavie CJ, Fares H, Menezes AR, O’Keefe JH (2013) L-carnitine in the secondary prevention of cardiovascular disease: systematic review and meta-analysis. Mayo Clin Proc 88:544–551. doi:10.1016/j.mayocp.2013.02.007

    Article  CAS  PubMed  Google Scholar 

  • Dunn WA, Rettura G, Seifter E, Englard S (1984) Carnitine biosynthesis from γ-butyrobetaine and from exogenous protein-bound 6-N-trimethyl-L-lysine by the perfused guinea pig liver. Effect of ascorbate deficiency on the in situ activity of γ-butyrobetaine hydroxylase. J Biol Chem 259:10764–10770

    CAS  PubMed  Google Scholar 

  • Franken J, Bauer FF (2010) Carnitine supplementation has protective and detrimental effects in Saccharomyces cerevisiae that are genetically mediated. FEMS Yeast Res 10:270–281

    Article  CAS  PubMed  Google Scholar 

  • Franken J, Kroppenstedt S, Swiegers JH, Bauer FF (2008) Carnitine and carnitine acetyltransferases in the yeast Saccharomyces cerevisiae: a role for carnitine in stress protection. Curr Genet 53:347–360

    Article  CAS  PubMed  Google Scholar 

  • Ghaddar K, Krammer E-M, Mihajlovic N, Brohée S, André B, Prévost M (2014) Converting the yeast arginine Can1 permease to a lysine permease. J Biol Chem 289:7232–7246. doi:10.1074/jbc.M113.525915

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gietz RD, Sugino A (1988) New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74:527–534

    Article  CAS  PubMed  Google Scholar 

  • Henderson JW, Brooks A (2010) Improved amino acid methods using Agilent ZORBAX Eclipse Plus C18 columns for a variety of Agilent LC instrumentation and separation goals. Agilent Technologies, Wilmington, DE. http://www.chem.agilent.com/Library/applications/5990-4547EN.pdf

  • Henderson LM, Nelson PJ, Henderson L (1982) Mammalian enzymes of trimethyllysine conversion to trimethylaminobutyrate. Fed Proc 41:2843–2847

    CAS  PubMed  Google Scholar 

  • Kang W-K, Lee B-U, Park Y, Koh E-S, Ju E-S, Lee J, Kim H, Choi H (2010) A microorganism of Enterobacteriaceae genus harbouring genes associated with L-carnitine biosynthesis and method of producing l-carnitine using the microorganism U.S. Patent 7718414

  • Kikonyogo A, Pietruszko R (1996) Aldehyde dehydrogenase from adult human brain that dehydrogenates γ-aminobutyraldehyde: purification, characterization, cloning and distribution. Biochem J 316(Pt 1):317–324

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kurys G, Shah PC, Kikonygo A, Reed D, Ambroziak W, Pietruszko R (1993) Human aldehyde dehydrogenase. cDNA cloning and primary structure of the enzyme that catalyzes dehydrogenation of 4-aminobutyraldehyde. Eur J Biochem 218:311–320

    Article  CAS  PubMed  Google Scholar 

  • LaBadie J, Dunn WA, Aronson NN (1976) Hepatic synthesis of carnitine from protein-bound trimethyl-lysine. Lysosomal digestion of methyl-lysine-labelled asialo-fetuin. Biochem J 160:85–95

    CAS  PubMed Central  PubMed  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948. doi:10.1093/bioinformatics/btm404

    Article  CAS  PubMed  Google Scholar 

  • Lin SW, Chen JC, Hsu LC, Hsieh CL, Yoshida A (1996) Human γ-aminobutyraldehyde dehydrogenase (ALDH9): cDNA sequence, genomic organization, polymorphism, chromosomal localization, and tissue expression. Genomics 34:376–380. doi:10.1006/geno.1996.0300

    Article  CAS  PubMed  Google Scholar 

  • Longo N, di San A, Filippo C, Pasquali M (2006) Disorders of carnitine transport and the carnitine cycle. Am J Med Genet C Semin Med Genet 142C:77–85. doi:10.1002/ajmg.c.30087

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McCluskey K, Wiest A, Plamann M (2010) The Fungal Genetics Stock Center: a repository for 50 years of fungal genetics research. J Biosci 35:119–126

    Article  CAS  PubMed  Google Scholar 

  • Meyer H-P, Robins KT (2005) Large scale bioprocess for the production of optically pure L-carnitine. Monatsh Chem 136:1269–1277. doi:10.1007/s00706-005-0330-y

    Article  CAS  Google Scholar 

  • Monschau N, Stahmann KP, Sahm H, McNeil JB, Bognar AL (1997) Identification of Saccharomyces cerevisiae GLY1 as a threonine aldolase: a key enzyme in glycine biosynthesis. FEMS Microbiol Lett 150:55–60

    Article  CAS  PubMed  Google Scholar 

  • Moses SBG, Otero RRC, Pretorius IS (2005) Domain engineering of Saccharomyces cerevisiae exoglucanases. Biotechnol Lett 27:355–362. doi:10.1007/s10529-005-1014-8

    Article  CAS  PubMed  Google Scholar 

  • Ramsay RR, Gandour RD, van der Leij FR (2001) Molecular enzymology of carnitine transfer and transport. Biochim Biophys Acta 1546:21–43

    Article  CAS  PubMed  Google Scholar 

  • Servillo L, Giovane A, Cautela D, Castaldo D, Balestrieri ML (2014) Where does N(ε)-trimethyllysine for the carnitine biosynthesis in mammals come from? PLoS One 9:e84589. doi:10.1371/journal.pone.0084589

    Article  PubMed Central  PubMed  Google Scholar 

  • Shanahan C (2011) L-carnitine: getting noticed in a challenging market place. Retrieved from http://www.frost.com/reg/blog-display.do?id=28527

  • Siebert PD, Chenchik A (1993) Modified acid guanidinium thiocyanate-phenol-chloroform RNA extraction method which greatly reduces DNA contamination. Nucleic Acids Res 21:2019–2020

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sikorski RS, Hieter P (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stein R, Englard S (1981) The use of a tritium release assay to measure 6-N-trimethyl-L-lysine hydroxylase activity: synthesis of 6-N-[3-3H]trimethyl-DL-lysine. Anal Biochem 116:230–236

    Article  CAS  PubMed  Google Scholar 

  • Swiegers JH, Dippenaar N, Pretorius IS, Bauer FF (2001) Carnitine-dependent metabolic activities in Saccharomyces cerevisiae: three carnitine acetyltransferases are essential in a carnitine-dependent strain. Yeast 18:585–595. doi:10.1002/yea.712

    Article  CAS  PubMed  Google Scholar 

  • Swiegers JH, Vaz FM, Pretorius IS, Wanders RJA, Bauer FF (2002) Carnitine biosynthesis in Neurospora crassa: identification of a cDNA coding for epsilon-N-trimethyllysine hydroxylase and its functional expression in Saccharomyces cerevisiae. FEMS Microbiol Lett 210:19–23

    CAS  PubMed  Google Scholar 

  • Tein I, Bukovac SW, Xie ZW (1996) Characterization of the human plasmalemmal carnitine transporter in cultured skin fibroblasts. Arch Biochem Biophys 329:145–155. doi:10.1006/abbi.1996.0203

    Article  CAS  PubMed  Google Scholar 

  • Van Roermund CW, Elgersma Y, Singh N, Wanders RJ, Tabak HF (1995) The membrane of peroxisomes in Saccharomyces cerevisiae is impermeable to NAD(H) and acetyl-CoA under in vivo conditions. EMBO J 14:3480–3486

    PubMed Central  PubMed  Google Scholar 

  • Vaz FM, Wanders RJA (2002) Carnitine biosynthesis in mammals. Biochem J 361:417–429

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vaz FM, van Gool S, Ofman R, Ijlst L, Wanders RJ (1998) Carnitine biosynthesis: identification of the cDNA encoding human γ-butyrobetaine hydroxylase. Biochem Biophys Res Commun 250:506–510. doi:10.1006/bbrc.1998.9343

    Article  CAS  PubMed  Google Scholar 

  • Vaz FM, van Gool S, Ofman R, Ijlst L, Wanders RJ (1999) Carnitine biosynthesis. Purification of γ-butyrobetaine hydroxylase from rat liver. Adv Exp Med Biol 466:117–124

    Article  CAS  PubMed  Google Scholar 

  • Vaz FM, Fouchier SW, Ofman R, Sommer M, Wanders RJ (2000) Molecular and biochemical characterization of rat γ-trimethylaminobutyraldehyde dehydrogenase and evidence for the involvement of human aldehyde dehydrogenase 9 in carnitine biosynthesis. J Biol Chem 275:7390–7394

    Article  CAS  PubMed  Google Scholar 

  • Vaz FM, Ofman R, Westinga K, Back JW, Wanders RJ (2001) Molecular and biochemical characterization of rat ε-N-trimethyllysine hydroxylase, the first enzyme of carnitine biosynthesis. J Biol Chem 276:33512–33517. doi:10.1074/jbc.M105929200

    Article  CAS  PubMed  Google Scholar 

  • Vogel HJ (1956) A convenient growth medium for Neurospora (Medium N). Microbial Genet Bull 13:42–43

    Google Scholar 

  • Winston F, Dollard C, Ricupero-Hovasse SL (1995) Construction of a set of convenient Saccharomyces cerevisiae strains that are isogenic to S288C. Yeast 11:53–55. doi:10.1002/yea.320110107

    Article  CAS  PubMed  Google Scholar 

  • Winter SC (2003) Treatment of carnitine deficiency. J Inherit Metab Dis 26:171–180

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Jaco Franken was supported by an NRF NPPD postdoctoral fellowship (National Research Foundation of SA, grant number 78691 (http://www.nrf.ac.za/)).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian F. Bauer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 2392 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franken, J., Burger, A., Swiegers, J.H. et al. Reconstruction of the carnitine biosynthesis pathway from Neurospora crassa in the yeast Saccharomyces cerevisiae . Appl Microbiol Biotechnol 99, 6377–6389 (2015). https://doi.org/10.1007/s00253-015-6561-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6561-x

Keywords

Navigation