Skip to main content
Log in

Denitrifying sulfide removal process on high-salinity wastewaters

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Denitrifying sulfide removal (DSR) process comprising both heterotrophic and autotrophic denitrifiers can simultaneously convert nitrate, sulfide, and acetate into nitrogen gas, elemental sulfur (S0), and carbon dioxide, respectively. Sulfide- and nitrate-laden wastewaters at 2–35 g/L NaCl were treated by DSR process. A C/N ratio of 3:1 was proposed to maintain high S0 conversion rate. The granular sludge with a compact structure and smooth outer surface was formed. The microbial communities of DSR consortium via high-throughput sequencing method suggested that salinity shifts the predominating heterotrophic denitrifiers at <10 g/L NaCl to autotrophic denitrifiers at >10 g/L NaCl.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • APHA (1998) Standard Methods for the Examination of Water and Wastewater, 20th edition. American Public Health Association, Washington, DC

    Google Scholar 

  • Beristain-Cardoso R, Texier AC, Sierra-Alvarea R, Razo-Flore EJ, Field A, Gomez J (2009) Effect of initial sulfide concentration on sulfide and phenol oxidation under denitrifying conditions. Chemosphere 74:200–205

    Article  PubMed  Google Scholar 

  • Chen C, Wang AJ, Ren NQ, Kan HJ, Lee DJ (2008) Biological breakdown of denitrifying sulfide removal process in high-rate expanded granular bed reactor. Appl Microbiol Biotechnol 81:765–770

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Wang AJ, Ren NQ, Lee DJ, Lai JY (2009) High-rate denitrifying sulfide removal process in expanded granular sludge bed reactor. Bioresour Technol 100:2316–2319

    Article  CAS  PubMed  Google Scholar 

  • Fontenot Q, Bonvillain C, Kilgen M, Boopathy R (2007) Effects of temperature, salinity, and carbon: nitrogen ratio on sequencing batch reactor treating shrimp aquaculture wastewater. Bioresour Technol 98:1700–1703

    Article  CAS  PubMed  Google Scholar 

  • Ismail SB, La Parra de CJ, Temmink H, van Lier JB (2010) Extracellular polymeric substances (EPS) in upflow anaerobic sludge blanket (UASB) reactors operated under high salinity conditions. Water Res 44:1909–1917

    Article  CAS  PubMed  Google Scholar 

  • Kargi F, Uygur A (1997) Biological treatment of saline wastewater in a rotating biodisc contactor by using halophilic organisms. Bioprocess Eng 17(2):81–85

    Article  CAS  Google Scholar 

  • Krieger B, Schwermer CU (2006) Diversity of nitrate-reducing and denitrifying bacteria in a marine aquaculture biofilter Proceedings of the 11th International Symposium on Microbial Ecology (ISME-11) International Society for Microbial Ecology

  • Lee DJ, Pan X, Wang A, Ho KL (2013a) Facultative autotrophic denitrifiers in denitrifying sulfide removal granules. Bioresour Technol 132:356–360

    Article  CAS  PubMed  Google Scholar 

  • Lee DJ, Wong BT, Adav SS (2013b) Azoarcus taiwanensis sp. nov., a denitrifying species isolated from a hot spring. Appl Microbiol and Biotechnol, 1-7

  • Laguna A, Ouattara A, Gonzalez RO, Baron O, Famá G, El MR, Guiot S, Monroy O, Macarie H (1999) A simple and low cost technique for determining the granulometry of upflow anaerobic sludge blanket reactor sludge. Water Sci Technol 40:1–8

    Article  Google Scholar 

  • Lefebvre O, Quentin S, Torrijos M, Godon JJ, Delgenes JP, Moletta R (2007) Impact of increasing NaCl concentrations on the performance and community composition of two anaerobic reactors. Appl Microbiol Biotechnol 75(1):61–69

    Article  CAS  PubMed  Google Scholar 

  • Li W, Zhao QL, Liu H (2009) Sulfide removal by simultaneous autotrophic and heterotrophic desulfurization-denitrification process. J Hazard Mater 162:848–853

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Liu T, Peng Y, Wang S, Xiao H (2014) Effect of salinity on N2O production during shortcut biological nitrogen removal from landfill leachate. J Biosci Bioeng 117(5):582–590

    Article  CAS  PubMed  Google Scholar 

  • Mahmood Q, Hu BL, Cai J, Zheng P, Azim MR, Jilani G, Islam E (2009) Isolation of Ochrobactrum sp. QZ2 from sulfide and nitrite treatment system. J Hazard Mater 16:5558–5565

    Google Scholar 

  • Morgan JW, Forster CF, Evison L (1990) A comparative-study of the nature of biopolymers extracted from anaerobic and activated sludges. Water Res 24(6):743–750

    Article  CAS  Google Scholar 

  • Omil F, Mendez R, Lema JM (1995) Anaerobic treatment of saline wastewaters under high sulphide and ammonia content. Bioresour Technol 54(3):269–278

    Article  CAS  Google Scholar 

  • Osaka T, Yoshie S, Tsuneda S, Hirata A, Iwami N, Inamori Y (2006) Identification of acetate- or methanol-assimilating bacteria under nitrate-reducing conditions by stable-isotope probing. Microb Ecol 52(2):253–266

    Article  CAS  PubMed  Google Scholar 

  • Paulina K (1969) The effect of some salts on Thiobacillus thioparus. Can J Microbiol 15(3):314–318

    Article  Google Scholar 

  • Reyes-Avila JS, Razo-Flores E, Gomez J (2004) Simultaneous biological removal of nitrogen, carbon and sulfur by denitrification. Water Res 38:3313–3321

    Article  CAS  PubMed  Google Scholar 

  • Rinzema A, Vanlier J, Lettinga G (1988) Sodium inhibition of acetoclastic methanogens in granular sludge from a UASB reactor. Enzyme Microbiol Technol 10(1):24–32

    Article  CAS  Google Scholar 

  • Sun X, Wang H, Sun Y, Yu D (2010) Experimental study on shortcut nitrification of sewage from flushing toilet with seawater. J Environ Technol Eng 3(1):20–23

    Google Scholar 

  • Teixeira C, Magalhaes C, Joye SB, Bordalo AA (2013) The role of salinity in shaping dissolved inorganic nitrogen and N2O dynamics in estuarine sediment waterInterface. Mar Pollut Bull 66:225–229

    Article  CAS  PubMed  Google Scholar 

  • Truper HG, Schlegel HG (1964) Sulfur metabolism of Thiorhodaceae. I. Quantitative measurements on growing cells of Chromatium okenii. Anton Leeuw Int 30:225–238

    Article  Google Scholar 

  • Wang AJ, Liu CS, Han HJ, Ren NQ, Lee DJ (2009) Modeling denitrifying sulfide removal process using artificial neural networks. J Hazard Mater 168:1274–1279

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Jiang G, Ye L, Pijuan M, Yuan Z (2014) Heterotrophic denitrification palys an important role in N2O production from nitritation reactors treating anaerobic sludge digestion liquor. Water Res 62:202–210

    Article  CAS  PubMed  Google Scholar 

  • Wong B, Lee DJ (2011) Denitrifying sulfide removal and carbon methanogenesis in a mesophilic, methanogenic culture. Bioresour Technol 102:6673–6679

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The research was supported by National Natural Science Foundation of China under Grant No. 21307160, Natural Science Foundation of Shandong Province under Grant No. ZR2013EEQ030 and Fundamental Research Funds for the Central Universities under Grant No. R1404005A. Thanks to Dr. Weimin Wu from Sanford for his help and suggestion in conducting this experiment.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chunshuang Liu or Duu-Jong Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Zhao, C., Wang, A. et al. Denitrifying sulfide removal process on high-salinity wastewaters. Appl Microbiol Biotechnol 99, 6463–6469 (2015). https://doi.org/10.1007/s00253-015-6505-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6505-5

Keywords

Navigation