Applied Microbiology and Biotechnology

, Volume 99, Issue 12, pp 5109–5121

Size control of in vitro synthesized magnetite crystals by the MamC protein of Magnetococcus marinus strain MC-1

  • C. Valverde-Tercedor
  • M. Montalbán-López
  • T. Perez-Gonzalez
  • M. S. Sanchez-Quesada
  • T. Prozorov
  • E. Pineda-Molina
  • M. A. Fernandez-Vivas
  • A. B. Rodriguez-Navarro
  • D. Trubitsyn
  • Dennis A. Bazylinski
  • C. Jimenez-Lopez
Biotechnologically relevant enzymes and proteins

DOI: 10.1007/s00253-014-6326-y

Cite this article as:
Valverde-Tercedor, C., Montalbán-López, M., Perez-Gonzalez, T. et al. Appl Microbiol Biotechnol (2015) 99: 5109. doi:10.1007/s00253-014-6326-y

Abstract

Magnetotactic bacteria are a diverse group of prokaryotes that share the unique ability of biomineralizing magnetosomes, which are intracellular, membrane-bounded crystals of either magnetite (Fe3O4) or greigite (Fe3S4). Magnetosome biomineralization is mediated by a number of specific proteins, many of which are localized in the magnetosome membrane, and thus is under strict genetic control. Several studies have partially elucidated the effects of a number of these magnetosome-associated proteins in the control of the size of magnetosome magnetite crystals. However, the effect of MamC, one of the most abundant proteins in the magnetosome membrane, remains unclear. In this present study, magnetite nanoparticles were synthesized inorganically in free-drift experiments at 25 °C in the presence of different concentrations of the iron-binding recombinant proteins MamC and MamCnts (MamC without its first transmembrane segment) from the marine, magnetotactic bacterium Magnetococcus marinus strain MC-1 and three commercial proteins [α-lactalbumin (α-Lac), myoglobin (Myo), and lysozyme (Lyz)]. While no effect was observed on the size of magnetite crystals formed in the presence of the commercial proteins, biomimetic synthesis in the presence of MamC and MamCnts at concentrations of 10–60 μg/mL resulted in the production of larger and more well-developed magnetite crystals (~30–40 nm) compared to those of the control (~20–30 nm; magnetite crystals grown protein-free). Our results demonstrate that MamC plays an important role in the control of the size of magnetite crystals and could be utilized in biomimetic synthesis of magnetite nanocrystals.

Keywords

Biomimetics Biomineralization MamC Magnetite nanoparticles Magnetosomes Magnetococcus marinus strain MC-1 Magnetotactic bacteria 

Supplementary material

253_2014_6326_MOESM1_ESM.pdf (733 kb)
ESM 1(PDF 733 kb)

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • C. Valverde-Tercedor
    • 1
    • 6
  • M. Montalbán-López
    • 1
    • 7
  • T. Perez-Gonzalez
    • 1
  • M. S. Sanchez-Quesada
    • 1
  • T. Prozorov
    • 2
  • E. Pineda-Molina
    • 3
  • M. A. Fernandez-Vivas
    • 1
  • A. B. Rodriguez-Navarro
    • 4
  • D. Trubitsyn
    • 5
    • 8
  • Dennis A. Bazylinski
    • 5
  • C. Jimenez-Lopez
    • 1
  1. 1.Departamento de MicrobiologiaUniversidad de GranadaGranadaSpain
  2. 2.US DOE Ames LaboratoryAmesUSA
  3. 3.Laboratorio de Estudios Cristalográficos, IACTCSICGranadaSpain
  4. 4.Departamento de Mineralogía y PetrologíaUniversidad de GranadaGranadaSpain
  5. 5.School of Life SciencesUniversity of Nevada at Las VegasLas VegasUSA
  6. 6.Department of BiomaterialsMax Planck Institute of Colloids and InterfacesPotsdamGermany
  7. 7.Department of Molecular GeneticsUniversity of GroningenGroningenNetherlands
  8. 8.Department of Biological SciencesSouthwestern Oklahoma State UniversityWeatherfordUSA