Skip to main content

Advertisement

Log in

Fungal naphtho-γ-pyrones—secondary metabolites of industrial interest

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Naphtho-γ-pyrones (NGPs) are secondary metabolites mainly produced by filamentous fungi (Fusarium sp., Aspergillus sp.) that should be considered by industrials. Indeed, these natural biomolecules show various biological activities: anti-oxidant, anti-microbial, anti-cancer, anti-HIV, anti-hyperuricuric, anti-tubercular, or mammalian triacylglycerol synthesis inhibition which could be useful for pharmaceutical, cosmetic, and/or food industries. In this review, we draw an overview on the interest in studying fungal NGPs by presenting their biological activities and their potential values for industrials, their biochemical properties, and what is currently known on their biosynthetic pathway. Finally, we will present what remains to be discovered about NGPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akiyama K, Teraguchi S, Hamasaki Y, Mori M, Tatsumi K, Ohnishi K, Hayashi H (2003) New dimeric naphthopyrones from Aspergillus niger. J Nat Prod 66:136–139. doi:10.1021/np020174p

    CAS  PubMed  Google Scholar 

  • Alvarez-Vasquez F, González-Alcón C, Torres NV (2000) Metabolism of citric acid production by Aspergillus niger: model definition, steady-state analysis and constrained optimization of citric acid production rate. Biotechnol Bioeng 70:82–108

    CAS  PubMed  Google Scholar 

  • Aneja KR, Dhiman R, Aggarwal NK, Aneja A (2014) Emerging preservation techniques for controlling spoilage and pathogenic microorganisms in fruit juices. Int J Microbiol. doi:10.1155/2014/758942

    PubMed Central  PubMed  Google Scholar 

  • Archer DB, Connerton IF, MacKenzie DA (2008) Filamentous fungi for production of food additives and processing aids. Adv Biochem Eng Biotechnol 111:99–147. doi:10.1007/10_2007_094

    CAS  PubMed  Google Scholar 

  • Asai T, Yamamoto T, Oshima Y (2012) Aromatic polyketide production in Cordyceps indigotica, an entomopathogenic fungus, induced by exposure to a histone deacetylase inhibitor. Org Lett 14:2006–2009. doi:10.1021/ol3005062

    CAS  PubMed  Google Scholar 

  • Ashley JN, Hobbs BC, Raistrick H (1937) Studies in the biochemistry of micro-organisms: the crystalline colouring matters of Fusarium culmorum (W. G. Smith) Sacc. and related forms. Biochem J 31:385–397

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barrow RA, McCulloch MWB (2009) Linear naphtho-gamma-pyrones: a naturally occurring scaffold of biological importance. Mini-Rev Med Chem 9:273–292

    CAS  PubMed  Google Scholar 

  • Bokesch HR, Cartner LK, Fuller RW, Wilson JA, Henrich CJ, Kelley JA, Gustafson KR, McMahon JB, McKee TC (2010) Inhibition of ABCG2-mediated drug efflux by naphthopyrones from marine crinoids. Bioorg Med Chem Lett 20:3848–3850. doi:10.1016/j.bmcl.2010.05.057

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bouras N, Mathieu F, Coppel Y, Lebrihi A (2005) Aurasperone F—a new member of the naphtho-gamma-pyrone class isolated from a cultured microfungus, Aspergillus niger C-433. Nat Prod Res 19:653–659. doi:10.1080/14786410412331286955

    CAS  PubMed  Google Scholar 

  • Bouras N, Mathieu F, Coppel Y, Strelkov SE, Lebrihi A (2007) Occurrence of naphtho-gamma-pyrones- and ochratoxin A-producing fungi in French grapes and characterization of new naphtho-gamma-pyrone polyketide (aurasperone G) isolated from Aspergillus niger C-433. J Agric Food Chem 55:8920–8927. doi:10.1021/jf071406z

    CAS  PubMed  Google Scholar 

  • Burke KE (2007) Interaction of vitamins C and E as better cosmeceuticals. Dermatol Ther 20:314–321. doi:10.1111/j.1529-8019.2007.00145.x

    PubMed  Google Scholar 

  • Bycroft BW, Dobson TA, Robert JC (1962) Studies in mycological chemistry. Part VIII. The structure of flavasperone (“asperxanthone”), a metabolite of Aspergillus niger. J Chem Soc. doi:10.1039/JR9620004179

  • Campos FR, Barison A, Daolio C, Ferreira AG, Rodrigues-Fo E (2005) Complete 1H and 13C NMR assignments of aurasperone A and fonsecinone A, two bis-naphthopyrones produced by Aspergillus aculeatus. Magn Reson Chem 43:962–965. doi:10.1002/mrc.1654

    CAS  PubMed  Google Scholar 

  • Cardellina JH, Roxas-Duncan VI, Montgomery V, Eccard V, Campbell Y, Hu X, Khavrutskii I, Tawa GJ, Wallqvist A, Gloer JB, Phatak NL, Höller U, Soman AG, Joshi BK, Hein SM, Wicklow DT, Smith LA (2012) Fungal bis-naphthopyrones as inhibitors of botulinum neurotoxin serotype A. ACS Med Chem Lett 3:387–391. doi:10.1021/ml200312s

    CAS  PubMed Central  PubMed  Google Scholar 

  • Carey ST, Nair MS (1975) Metabolites of Pyrenomycetes V. Identification of an antibiotic from two species of Nectria, as cephalochromin. Lloydia 38:448–449

    CAS  PubMed  Google Scholar 

  • Chang C-C, Chen W-C, Ho T-F, Wu H-S, Wei Y-H (2011) Development of natural anti-tumor drugs by microorganisms. J Biosci Bioeng 111:501–511. doi:10.1016/j.jbiosc.2010.12.026

    CAS  PubMed  Google Scholar 

  • Chiang Y-M, Meyer KM, Praseuth M, Baker SE, Bruno KS, Wang CCC (2011) Characterization of a polyketide synthase in Aspergillus niger whose product is a precursor for both dihydroxynaphthalene (DHN) melanin and naphtho-γ-pyrone. Fungal Genet Biol 48:430–437. doi:10.1016/j.fgb.2010.12.001

    CAS  PubMed Central  PubMed  Google Scholar 

  • Choi J, Hj L, Ky P, Jo H, Ss K (1997) In vitro antimutagenic effects of anthraquinone aglycones and naphthopyrone glycosides from Cassia tora. Planta Med 63:11–14

    CAS  PubMed  Google Scholar 

  • Chovolou Y, Ebada SS, Wätjen W, Proksch P (2011) Identification of angular naphthopyrones from the Philippine echinoderm Comanthus species as inhibitors of the NF-κB signaling pathway. Eur J Pharmacol 657:26–34. doi:10.1016/j.ejphar.2011.01.039

    CAS  PubMed  Google Scholar 

  • Delucca AJ, Ehrlich KC, Ciegler A (1983) Toxicity of extracts of Aspergillus niger isolated from stored cottonseed. J Food Saf 5:95–101. doi:10.1111/j.1745-4565.1983.tb00460.x

    Google Scholar 

  • De Vries RP, Frisvad JC, van de Vondervoort PJI, Burgers K, Kuijpers AFA, Samson RA, Visser J (2005) Aspergillus vadensis, a new species of the group of black Aspergilli. Antonie Van Leeuwenhoek 87:195–203. doi:10.1007/s10482-004-3194-y

    PubMed  Google Scholar 

  • Divirgilio ES, Dugan EC, Mulrooney CA, Kozlowski MC (2007) Asymmetric total synthesis of nigerone. Org Lett 9:385–388. doi:10.1021/ol062468y

    CAS  PubMed  Google Scholar 

  • Ehrlich KC, DeLucca AJ 2nd, Ciegler A (1984) Naphtho-gamma-pyrone production by Aspergillus niger isolated from stored cottonseed. Appl Environ Microbiol 48:1–4

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ernst-Russell MA, Chai CL, Wardlaw JH, Elix JA (2000) Euplectin and coneuplectin, new naphthopyrones from the lichen Flavoparmelia euplecta. J Nat Prod 63:129–131

    CAS  PubMed  Google Scholar 

  • Fisch KM, Gillaspy AF, Gipson M, Henrikson JC, Hoover AR, Jackson L, Najar FZ, Wägele H, Cichewicz RH (2009) Chemical induction of silent biosynthetic pathway transcription in Aspergillus niger. J Ind Microbiol Biotechnol 36:1199–1213. doi:10.1007/s10295-009-0601-4

    CAS  PubMed  Google Scholar 

  • Frandsen RJN, Nielsen NJ, Maolanon N, Sørensen JC, Olsson S, Nielsen J, Giese H (2006) The biosynthetic pathway for aurofusarin in Fusarium graminearum reveals a close link between the naphthoquinones and naphthopyrones. Mol Microbiol 61:1069–1080. doi:10.1111/j.1365-2958.2006.05295.x

    CAS  PubMed  Google Scholar 

  • Frandsen RJN, Schütt C, Lund BW, Staerk D, Nielsen J, Olsson S, Giese H (2011) Two novel classes of enzymes are required for the biosynthesis of aurofusarin in Fusarium graminearum. J Biol Chem 286:10419–10428. doi:10.1074/jbc.M110.179853

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fujii I, Watanabe A, Sankawa U, Ebizuka Y (2001) Identification of Claisen cyclase domain in fungal polyketide synthase WA, a naphthopyrone synthase of Aspergillus nidulans. Chem Biol 8:189–197

    CAS  PubMed  Google Scholar 

  • Fujii I, Yasuoka Y, Tsai H-F, Chang YC, Kwon-Chung KJ, Ebizuka Y (2004) Hydrolytic polyketide shortening by ayg1p, a novel enzyme involved in fungal melanin biosynthesis. J Biol Chem 279:44613–44620. doi:10.1074/jbc.M406758200

    CAS  PubMed  Google Scholar 

  • Galmarini OL, Stodola FH, Raper KB, Fennell DI (1962) Fonsecin, a naphthopyrone pigment from a mutant of Aspergillus fonsecaeus. Nature 195:502–503. doi:10.1038/195502a0

    CAS  Google Scholar 

  • Ghosal S, Biswas K, Chakrabarti DK (1979) Toxic naphtho-gamma-pyrones from Aspergillus niger. J Agric Food Chem 27:1347–1351

    CAS  PubMed  Google Scholar 

  • Graham JG, Zhang H, Pendland SL, Santarsiero BD, Mesecar AD, Cabieses F, Farnsworth NR (2004) Antimycobacterial naphthopyrones from Senna obliqua. J Nat Prod 67:225–227. doi:10.1021/np030348i

    CAS  PubMed  Google Scholar 

  • Haskins RH, Knapp C (1969) Cephalosporium sp. (PRL 2070) and the production of cephalochromin. Can J Microbiol 15:435–437

    CAS  PubMed  Google Scholar 

  • Hegde VR, Miller JR, Patel MG, King AH, Puar MS, Horan A, Hart R, Yarborough R, Gullo V (1993) SCH 45752—an inhibitor of calmodulin-sensitive cyclic nucleotide phosphodiesterase activity. J Antibiot 46:207–213

    CAS  PubMed  Google Scholar 

  • Heinekamp T, Thywißen A, Macheleidt J, Keller S, Valiante V, Brakhage AA (2012) Aspergillus fumigatus melanins: interference with the host endocytosis pathway and impact on virulence. Front Microbiol 3:440. doi:10.3389/fmicb.2012.00440

    PubMed Central  PubMed  Google Scholar 

  • Hsiao C-J, Hsiao G, Chen W-L, Wang S-W, Chiang C-P, Liu L-Y, Guh J-H, Lee T-H, Chung C-L (2014) Cephalochromin induces g0/g1 cell cycle arrest and apoptosis in a549 human non-small-cell lung cancer cells by inflicting mitochondrial disruption. J Nat Prod 77:758–765. doi:10.1021/np400517g

    CAS  PubMed  Google Scholar 

  • Huang H-B, Feng X-J, Liu L, Chen B, Lu Y-J, Ma L, She Z-G, Lin Y-C (2010) Three dimeric naphtho-γ-pyrones from the mangrove endophytic fungus Aspergillus tubingensis isolated from Pongamia pinnata. Planta Med 76:1888–1891. doi:10.1055/s-0030-1249955

    CAS  PubMed  Google Scholar 

  • Huang H-B, Xiao Z-E, Feng X-J, Huang C-H, Zhu X, Ju J-H, Li M-F, Lin Y-C, Liu L, She Z-G (2011) Cytotoxic naphtho-γ-pyrones from the mangrove endophytic fungus Aspergillus tubingensis (GX1-5E). HCA 94:1732–1740. doi:10.1002/hlca.201100050

    CAS  Google Scholar 

  • Ikeda S, Sugita M, Yoshimura A, Sumizawa T, Douzono H, Nagata Y, Akiyama S (1990) Aspergillus species strain M39 produces two naphtho-gamma-pyrones that reverse drug resistance in human KB cells. Int J Cancer 45:508–513

    CAS  PubMed  Google Scholar 

  • Isaka M, Palasarn S, Kocharin K, Hywel-Jones NL (2007) Comparison of the bioactive secondary metabolites from the scale insect pathogens, anamorph Paecilomyces cinnamomeus, and teleomorph Torrubiella luteorostrata. J Antibiot 60:577–581. doi:10.1038/ja.2007.73

    CAS  PubMed  Google Scholar 

  • Ishii R, Horie M, Koyama K, Ishikawa Y, Kitanaka S (2005) Inhibitory effects of fungal bis(naphtho-gamma-pyrone) derivatives on nitric oxide production by a murine macrophage-like cell line, RAW 264.7, activated by lipopolysaccharide and interferon-gamma. Biol Pharm Bull 28:786–790

    CAS  PubMed  Google Scholar 

  • Jørgensen TR, Nielsen KF, Arentshorst M, Park J, van den Hondel CA, Frisvad JC, Ram AF (2011a) Submerged conidiation and product formation by Aspergillus niger at low specific growth rates are affected in aerial developmental mutants. Appl Environ Microbiol 77:5270–5277. doi:10.1128/AEM. 00118-11

    PubMed Central  PubMed  Google Scholar 

  • Jørgensen TR, Park J, Arentshorst M, van Welzen AM, Lamers G, Vankuyk PA, Damveld RA, van den Hondel CAM, Nielsen KF, Frisvad JC, Ram AFJ (2011b) The molecular and genetic basis of conidial pigmentation in Aspergillus niger. Fungal Genet Biol 48:544–553. doi:10.1016/j.fgb.2011.01.005

    PubMed  Google Scholar 

  • Karre L, Lopez K, Getty KJK (2013) Natural antioxidants in meat and poultry products. Meat Sci 94:220–227. doi:10.1016/j.meatsci.2013.01.007

    CAS  PubMed  Google Scholar 

  • Kew MC (2013) Aflatoxins as a cause of hepatocellular carcinoma. J Gastrointest Liver Dis 22:305–310

    Google Scholar 

  • Kitanaka S, Nakayama T, Shibano T, Ohkoshi E, Takido M (1998) Antiallergic agent from natural sources. Structures and inhibitory effect of histamine release of naphthopyrone glycosides from seeds of Cassia obtusifolia L. Chem Pharm Bull 46:1650–1652

    CAS  PubMed  Google Scholar 

  • Kock I, Draeger S, Schulz B, Elsässer B, Kurtán T, Kenéz Á, Antus S, Pescitelli G, Salvadori P, Speakman J-B, Rheinheimer J, Krohn K (2009) Pseudoanguillosporin A and B: two new isochromans isolated from the endophytic fungus Pseudoanguillospora sp. Eur J Org Chem 2009:1427–1434. doi:10.1002/ejoc.200801083

    Google Scholar 

  • Kong X, Ma X, Xie Y, Cai S, Zhu T, Gu Q, Li D (2013) Aromatic polyketides from a sponge-derived fungus Metarhizium anisopliae mxh-99 and their antitubercular activities. Arch Pharm Res 36:739–744. doi:10.1007/s12272-013-0077-7

    CAS  PubMed  Google Scholar 

  • Koyama K, Natori S (1988) Further characterization of seven bis(naphtho-γ-pyrone) congeners of ustilaginoidins, coloring matters of Claviceps virens (Ustilaginoidea virens). Chem Pharm Bull 36:146–152

    CAS  Google Scholar 

  • Koyama K, Ominato K, Natori S, Tashiro T, Tsuruo T (1988) Cytotoxicity and antitumor activities of fungal bis(naphtho-gamma-pyrone) derivatives. J Pharmacobio-dyn 11:630–635

    CAS  PubMed  Google Scholar 

  • Langfelder K, Jahn B, Gehringer H, Schmidt A, Wanner G, Brakhage AA (1998) Identification of a polyketide synthase gene (pksP) of Aspergillus fumigatus involved in conidial pigment biosynthesis and virulence. Med Microbiol Immunol 187:79–89

    CAS  PubMed  Google Scholar 

  • Langfelder K, Streibel M, Jahn B, Haase G, Brakhage AA (2003) Biosynthesis of fungal melanins and their importance for human pathogenic fungi. Fungal Genet Biol 38:143–158

    CAS  PubMed  Google Scholar 

  • Lee B-H, Pan T-M (2012) Benefit of Monascus-fermented products for hypertension prevention: a review. Appl Microbiol Biotechnol 94:1151–1161. doi:10.1007/s00253-012-4076-2

    CAS  PubMed  Google Scholar 

  • Lee GY, Jang DS, Lee YM, Kim JM, Kim JS (2006) Naphthopyrone glucosides from the seeds of Cassia tora with inhibitory activity on advanced glycation end products (AGEs) formation. Arch Pharm Res 29:587–590

    CAS  PubMed  Google Scholar 

  • Lee H-M, Chan DS-H, Yang F, Lam H-Y, Yan S-C, Che C-M, Ma D-L, Leung C-H (2010) Identification of natural product fonsecin B as a stabilizing ligand of c-myc G-quadruplex DNA by high-throughput virtual screening. Chem Commun (Camb) 46:4680–4682. doi:10.1039/b926359d

    CAS  Google Scholar 

  • Lee YM, Kim MJ, Li H, Zhang P, Bao B, Lee KJ, Jung JH (2013) Marine-derived Aspergillus species as a source of bioactive secondary metabolites. Mar Biotechnol 15:499–519. doi:10.1007/s10126-013-9506-3

    CAS  PubMed  Google Scholar 

  • Leitão GG, Leitão SG, Vilegas W (2002) Quick preparative separation of natural naphthopyranones with antioxidant activity by high-speed counter-current chromatography. Z Naturforsch C J Biosci 57:1051–1055

    Google Scholar 

  • Li X-B, Xie F, Liu S-S, Li Y, Zhou J-C, Liu Y-Q, Yuan H-Q, Lou H-X (2013) Naphtho-γ-pyrones from endophyte Aspergillus niger occurring in the liverwort Heteroscyphus tener (Steph.) Schiffn. Chem Biodivers 10:1193–1201. doi:10.1002/cbdv.201300042

    CAS  PubMed  Google Scholar 

  • Li X-C, Dunbar DC, ElSohly HN, Jacob MR, Nimrod AC, Walker LA, Clark AM (2001) A new naphthopyrone derivative from Cassia quinquangulata and structural revision of quinquangulin and its glycosides. J Nat Prod 64:1153–1156. doi:10.1021/np010173h

    CAS  PubMed  Google Scholar 

  • Lu S, Yian J, Sun W, Meng J, Wang X, Fu X, Wang A, Lai D, Liu Y, Zhou L (2014) Bis-naphtho-gammapyrones from fungi and their bioactivities. Molecules 19(6):7169–7188

  • Lund NA, Robertson A, Whalley WB (1953) 494. The chemistry of fungi. Part XXI. Asperxanthone and a preliminary examination of aspergillin. J. Chem. Soc. 2434–2439. doi:10.1039/JR9530002434

  • Maldonado MC, Strasser de Saad AM (1998) Production of pectinesterase and polygalacturonase by Aspergillus niger in submerged and solid state systems. J Ind Microbiol Biotechnol 20:34–38

    CAS  PubMed  Google Scholar 

  • Malz S, Grell MN, Thrane C, Maier FJ, Rosager P, Felk A, Albertsen KS, Salomon S, Bohn L, Schäfer W, Giese H (2005) Identification of a gene cluster responsible for the biosynthesis of aurofusarin in the Fusarium graminearum species complex. Fungal Genet Biol 42:420–433. doi:10.1016/j.fgb.2005.01.010

    CAS  PubMed  Google Scholar 

  • Matsumoto M, Minato H, Kondo E, Mitsugi T, Katagiri K (1975) Cephalochromin, dihydroisoustilaginoidin A, and iso-ustilaginoidin A from Verticillium sp. K-113. J Antibiot 28:602–604

    CAS  PubMed  Google Scholar 

  • Nielsen KF, Mogensen JM, Johansen M, Larsen TO, Frisvad JC (2009) Review of secondary metabolites and mycotoxins from the Aspergillus niger group. Anal Bioanal Chem 395:1225–1242. doi:10.1007/s00216-009-3081-5

    CAS  PubMed  Google Scholar 

  • Ohkawa Y, Miki K, Suzuki T, Nishio K, Sugita T, Kinoshita K, Takahashi K, Koyama K (2010) Antiangiogenic metabolites from a marine-derived fungus, Hypocrea vinosa. J Nat Prod 73:579–582. doi:10.1021/np900698p

    CAS  PubMed  Google Scholar 

  • Paranagama PA, Wijeratne EMK, Gunatilaka AAL (2007) Uncovering biosynthetic potential of plant-associated fungi: effect of culture conditions on metabolite production by Paraphaeosphaeria quadriseptata and Chaetomium chiversii. J Nat Prod 70:1939–1945. doi:10.1021/np070504b

    CAS  PubMed  Google Scholar 

  • Priestap HA (1984) New naphthopyrones from Aspergillus fonsecaeus. Tetrahedron 40:3617–3624. doi:10.1016/S0040-4020(01)88792-5

    CAS  Google Scholar 

  • Qiang G, Xue S, Yang JJ, Du G, Pang X, Li X, Goswami D, Griffin PR, Ortlund EA, Chan CB, Ye K (2014) Identification of a small molecular insulin receptor agonist with potent antidiabetes activity. Diabetes 63:1394–1409. doi:10.2337/db13-0334

    CAS  PubMed  Google Scholar 

  • Rabache M, Adrian J (1982) Physiologic effects of the Aspergillus niger pigments. 2- Antioxygen property of the naphtho-gamma-pyrones estimated in the rat. Science des Aliments

  • Roukas T (2000) Citric and gluconic acid production from fig by Aspergillus niger using solid-state fermentation. J Ind Microbiol Biotechnol 25:298–304. doi:10.1038/sj/jim/7000101

    CAS  PubMed  Google Scholar 

  • Rugbjerg P, Naesby M, Mortensen UH, Frandsen RJ (2013) Reconstruction of the biosynthetic pathway for the core fungal polyketide scaffold rubrofusarin in Saccharomyces cerevisiae. Microb Cell Fact 12:31. doi:10.1186/1475-2859-12-31

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sakai K, Ohte S, Ohshiro T, Matsuda D, Masuma R, Rudel LL, Tomoda H (2008) Selective inhibition of acyl-CoA:cholesterol acyltransferase 2 isozyme by flavasperone and sterigmatocystin from Aspergillus species. J Antibiot 61:568–572. doi:10.1038/ja.2008.76

    CAS  PubMed  Google Scholar 

  • Sakurai M, Kohno J, Yamamoto K, Okuda T, Nishio M, Kawano K, Ohnuki T (2002) TMC-256A1 and C1, new inhibitors of IL-4 signal transduction produced by Aspergillus niger var niger TC 1629. J Antibiot 55:685–692

    CAS  PubMed  Google Scholar 

  • Scherlach K, Hertweck C (2009) Triggering cryptic natural product biosynthesis in microorganisms. Org Biomol Chem 7:1753–1760. doi:10.1039/b821578b

    CAS  PubMed  Google Scholar 

  • Scotter MJ, Castle L (2004) Chemical interactions between additives in foodstuffs: a review. Food Addit Contam 21:93–124. doi:10.1080/02652030310001636912

    CAS  PubMed  Google Scholar 

  • Sebranek JG, Bacus JN (2007) Cured meat products without direct addition of nitrate or nitrite: what are the issues? Meat Sci 77:136–147. doi:10.1016/j.meatsci.2007.03.025

    CAS  PubMed  Google Scholar 

  • Sekita S, Yoshihira K, Natori S (1980) Chaetochromin, a bis(naphthodihydropyran-4-one) mycotoxin from Chaetomium thielavioideum : application of 13C-1H long-rang coupling to the structure elucidation. Chem Pharm Bull 8:2428–2435

  • Shaaban M, Shaaban KA, Abdel-Aziz MS (2012) Seven naphtho-γ-pyrones from the marine-derived fungus Alternaria alternata: structure elucidation and biological properties. Org Med Chem Lett 2:6. doi:10.1186/2191-2858-2-6

    PubMed Central  PubMed  Google Scholar 

  • Shibata S, Ogihara Y (1963) Metabolic products of fungi. XXIII. On ustilaginoidins. (3). The structures of ustilaginoidins B and C. Chem Pharm Bull 11:1576–1578

    CAS  PubMed  Google Scholar 

  • Shibata S, Ogihara Y, Ohta A (1963) Metabolic products of fungi. XXII. On ustilaginoidins. (2). The structures of ustilaginoidin A. Chem Pharm Bull 11:1179–1182

    CAS  PubMed  Google Scholar 

  • Singh SB, Zink DL, Bills GF, Teran A, Silverman KC, Lingham RB, Felock P, Hazuda DJ (2003) Four novel bis-(naphtho-gamma-pyrones) isolated from Fusarium species as inhibitors of HIV-1 integrase. Bioorg Med Chem Lett 13:713–717

    CAS  PubMed  Google Scholar 

  • Slesiona S, Gressler M, Mihlan M, Zaehle C, Schaller M, Barz D, Hube B, Jacobsen ID, Brock M (2012) Persistence versus escape: Aspergillus terreus and Aspergillus fumigatus employ different strategies during interactions with macrophages. PLoS ONE 7:e31223. doi:10.1371/journal.pone.0031223

    CAS  PubMed Central  PubMed  Google Scholar 

  • Song YC, Li H, Ye YH, Shan CY, Yang YM, Tan RX (2004) Endophytic naphthopyrone metabolites are co-inhibitors of xanthine oxidase, SW1116 cell and some microbial growths. FEMS Microbiol Lett 241:67–72. doi:10.1016/j.femsle.2004.10.005

    CAS  PubMed  Google Scholar 

  • Sørensen JL, Nielsen KF, Sondergaard TE (2012) Redirection of pigment biosynthesis to isocoumarins in Fusarium. Fungal Genet Biol 49:613–618. doi:10.1016/j.fgb.2012.06.004

    PubMed  Google Scholar 

  • Stamford NPJ (2012) Stability, transdermal penetration, and cutaneous effects of ascorbic acid and its derivatives. J Cosmet Dermatol 11:310–317. doi:10.1111/jocd.12006

    PubMed  Google Scholar 

  • Tanaka H, Tamura T (1961) The chemical constitution of rubrofusarin. Tetrahedron Lett 2:151–155. doi:10.1016/S0040-4039(01)99228-7

    Google Scholar 

  • Tanaka H, Wang PL, Namiki M (1972) Structure of aurasperone C. Agri Biol Chem 36(13):2511-2517

  • Tanaka H, Wang P-L, Yamada O (1966) Yellow Pigments of Aspergillus niger and Asp. awamori Part I. Agric Biol Chem 30:107–113. doi:10.1271/bbb1961.30.107

    CAS  Google Scholar 

  • Thywißen A, Heinekamp T, Dahse H-M, Schmaler-Ripcke J, Nietzsche S, Zipfel PF, Brakhage AA (2011) Conidial dihydroxynaphthalene melanin of the human pathogenic fungus Aspergillus fumigatus interferes with the host endocytosis pathway. Front Microbiol 2:96. doi:10.3389/fmicb.2011.00096

    PubMed Central  PubMed  Google Scholar 

  • Tsai HF, Chang YC, Washburn RG, Wheeler MH, Kwon-Chung KJ (1998) The developmentally regulated alb1 gene of Aspergillus fumigatus: its role in modulation of conidial morphology and virulence. J Bacteriol 180:3031–3038

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tsai HF, Wheeler MH, Chang YC, Kwon-Chung KJ (1999) A developmentally regulated gene cluster involved in conidial pigment biosynthesis in Aspergillus fumigatus. J Bacteriol 181:6469–6477

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ugaki N, Matsuda D, Yamazaki H, Nonaka K, Masuma R, Omura S, Tomoda H (2012) New isochaetochromin, an inhibitor of triacylglycerol synthesis in mammalian cells, produced by Penicillium sp. FKI-4942: I. Taxonomy, fermentation, isolation and biological properties. J Antibiot 65:15–19. doi:10.1038/ja.2011.105

    CAS  PubMed  Google Scholar 

  • Wang P-L, Tanaka H (1966) Yellow pigments of Aspergillus niger and Aspergillus awamori. Agric Biol Chem 30:683–687. doi:10.1271/bbb1961.30.683

    CAS  Google Scholar 

  • Watanabe A, Ebizuka Y (2004) Unprecedented mechanism of chain length determination in fungal aromatic polyketide synthases. Chem Biol 11:1101–1106. doi:10.1016/j.chembiol.2004.05.015

    CAS  PubMed  Google Scholar 

  • Watanabe A, Fujii I, Sankawa U, Mayorga ME, Timberlake WE, Ebizuka Y (1999) Re-identification of Aspergillus nidulans wA gene to code for a polyketide synthase of naphthopyrone. Tetrahedron Lett 40:91–94. doi:10.1016/S0040-4039(98)80027-0

    CAS  Google Scholar 

  • Watanabe A, Fujii I, Tsai H, Chang YC, Kwon-Chung KJ, Ebizuka Y (2000) Aspergillus fumigatus alb1 encodes naphthopyrone synthase when expressed in Aspergillus oryzae. FEMS Microbiol Lett 192:39–44

    CAS  PubMed  Google Scholar 

  • Watanabe A, Ono Y, Fujii I, Sankawa U, Mayorga ME, Timberlake WE, Ebizuka Y (1998) Product identification of polyketide synthase coded by Aspergillus nidulans wA gene. Tetrahedron Lett 39:7733–7736. doi:10.1016/S0040-4039(98)01685-2

    CAS  Google Scholar 

  • Wheeler MH, Abramczyk D, Puckhaber LS, Naruse M, Ebizuka Y, Fujii I, Szaniszlo PJ (2008) New biosynthetic step in the melanin pathway of Wangiella (Exophiala) dermatitidis: evidence for 2-acetyl-1,3,6,8-tetrahydroxynaphthalene as a novel precursor. Eukaryot Cell 7:1699–1711. doi:10.1128/EC.00179-08

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wong SM, Wong MM, Seligmann O, Wagner H (1989) New antihepatotoxic naphtho-pyrone glycosides from the seeds of Cassia tora. Planta Med 55:276–280. doi:10.1055/s-2006-962003

    CAS  PubMed  Google Scholar 

  • Wu F, Groopman JD, Pestka JJ (2014) Public health impacts of foodborne mycotoxins. Annu Rev Food Sci Technol 5:351–372. doi:10.1146/annurev-food-030713-092431

    CAS  PubMed  Google Scholar 

  • Xiao J, Zhang Q, Gao Y-Q, Shi X-W, Gao J-M (2014) Antifungal and antibacterial metabolites from an endophytic Aspergillus sp. associated with Melia azedarach. Nat Prod Res. doi:10.1080/14786419.2014.904308

    Google Scholar 

  • Xie Q, Guo F-F, Zhou W (2012) Protective effects of cassia seed ethanol extract against carbon tetrachloride-induced liver injury in mice. Acta Biochim Pol 59:265–270

    CAS  PubMed  Google Scholar 

  • Xu G-B, Yang T, Bao J-K, Fang D-M, Li G-Y (2014) Isochaetomium A2, a new bis(naphthodihydropyran-4-one) with antimicrobial and immunological activities from fungus Chaetomium microcephalum. Arch Pharm Res 37:575–579. doi:10.1007/s12272-013-0206-3

    CAS  PubMed  Google Scholar 

  • Ye YH, Zhu HL, Song YC, Liu JY, Tan RX (2005) Structural revision of aspernigrin A, reisolated from Cladosporium herbarum IFB-E002. J Nat Prod 68:1106–1108. doi:10.1021/np050059p

    CAS  PubMed  Google Scholar 

  • Ye Y, Jia R-R, Tang L, Chen F (2014) In vivo antioxidant and anti-skin-aging activities of ethyl acetate extraction from Idesia polycarpa defatted fruit residue in aging mice induced by D-galactose. Evid Based Complement Alternat Med 2014:185716. doi:10.1155/2014/185716

    PubMed Central  PubMed  Google Scholar 

  • Young J (1998) European market developments in prebiotic- and probiotic-containing foodstuffs. Br J Nutr 80:S231–S233

    CAS  PubMed  Google Scholar 

  • Zaika LL, Smith JL (1975) Antioxidants and pigments of Aspergillus niger. J Sci Food Agric 26:1357–1369. doi:10.1002/jsfa.2740260915

    CAS  Google Scholar 

  • Zerikly M, Challis GL (2009) Strategies for the discovery of new natural products by genome mining. Chembiochem 10:625–633. doi:10.1002/cbic.200800389

    CAS  PubMed  Google Scholar 

  • Zhang Y, Ling S, Fang Y, Zhu T, Gu Q, Zhu W-M (2008) Isolation, structure elucidation, and antimycobacterial properties of dimeric naphtho-gamma-pyrones from the marine-derived fungus Aspergillus carbonarius. Chem Biodivers 5:93–100. doi:10.1002/cbdv.200890017

    PubMed  Google Scholar 

  • Zhang Y, Li X-M, Wang B-G (2007) Nigerasperones A approximately C, new monomeric and dimeric naphtho-gamma-pyrones from a marine alga-derived endophytic fungus Aspergillus niger EN-13. J Antibiot 60:204–210. doi:10.1038/ja.2007.24

    CAS  PubMed  Google Scholar 

  • Zhan J, Gunaherath GMKB, Wijeratne EMK, Gunatilaka AAL (2007) Asperpyrone D and other metabolites of the plant-associated fungal strain Aspergillus tubingensis. Phytochemistry 68:368–372. doi:10.1016/j.phytochem.2006.09.038

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zheng CJ, Sohn M-J, Lee S, Hong Y-S, Kwak J-H, Kim W-G (2007) Cephalochromin, a FabI-directed antibacterial of microbial origin. Biochem Biophys Res Commun 362:1107–1112. doi:10.1016/j.bbrc.2007.08.144

    CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florence Mathieu.

Additional information

Elodie Choque and Youssef El Rayess contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choque, E., El Rayess, Y., Raynal, J. et al. Fungal naphtho-γ-pyrones—secondary metabolites of industrial interest. Appl Microbiol Biotechnol 99, 1081–1096 (2015). https://doi.org/10.1007/s00253-014-6295-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-6295-1

Keywords

Navigation