Skip to main content

Advertisement

Log in

The specificity of α-glucosidase from Saccharomyces cerevisiae differs depending on the type of reaction: hydrolysis versus transglucosylation

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Our investigation of the catalytic properties of Saccharomyces cerevisiae α-glucosidase (AGL) using hydroxybenzyl alcohol (HBA) isomers as transglucosylation substrates and their glucosides in hydrolytic reactions demonstrated interesting findings pertaining to the aglycon specificity of this important enzyme. AGL specificity increased from the para(p)- to the ortho(o)-HBA isomer in transglucosylation, whereas such AGL aglycon specificity was not seen in hydrolysis, thus indicating that the second step of the reaction (i.e., binding of the glucosyl acceptor) is rate-determining. To study the influence of substitution pattern on AGL kinetics, we compared AGL specificity, inferred from kinetic constants, for HBA isomers and other aglycon substrates. The demonstrated inhibitory effects of HBA isomers and their corresponding glucosides on AGL-catalyzed hydrolysis of p-nitrophenyl α-glucoside (PNPG) suggest that HBA glucosides act as competitive, whereas HBA isomers are noncompetitive, inhibitors. As such, we postulate that aromatic moieties cannot bind to an active site unless an enzyme-glucosyl complex has already formed, but they can interact with other regions of the enzyme molecule resulting in inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andreotti G, Giordano A, Tramice A, Mollo E, Trincone A (2006) Hydrolyses and transglycosylations performed by purified α-d-glucosidase of the marine mollusc Aplysia fasciata. J Biotechnol 122:274–284

    Article  CAS  PubMed  Google Scholar 

  • Balba M, El-Hady N, Taha N, Rezki N, El Ashry ESH (2011) Inhibition of α-glucosidase and α-amylase by diaryl derivatives of imidazole-thione and 1,2,4-triazole-thiol. Eur J Med Chem 46:2596–2601

    Article  CAS  PubMed  Google Scholar 

  • Chiba S, Shimomura T (1978) Diversity of substrate specificity of α-glucosidase. J Jap Soc Starch Sci 25:105–112

    Article  CAS  Google Scholar 

  • Copeland RA (2000) Enzymes: a practical introduction to structure, mechanism, and data analysis, 2nd edn. Wiley VCH, New York, p 126

    Book  Google Scholar 

  • Dhiman SB, Kamat JP, Naik DB (2009) Antioxidant activity and free radical scavenging reactions of hydroxybenzyl alcohols. Biochemical and pulse radiolysis studies. Chem Biol Interact 182:119–127

    Article  CAS  PubMed  Google Scholar 

  • Dimitrijevic A, Velickovic D, Milosavic N, Bezbradica D (2012) Specificity of maltase to maltose in three different directions of reaction: hydrolytic, vanillyl alcohol glucoside and vanillyl alcohol isomaltoside synthesis. Biotechnol Prog 28:1450–1456

    Article  CAS  PubMed  Google Scholar 

  • Du Z, Liu P, Shao W, Mao X, Ma L, Gu L, Huang Z, Chan ASC (2006) α-glucosidase inhibition of natural curcuminoids and curcumin analogs. Eur J Med Chem 41:213–218

    Article  CAS  PubMed  Google Scholar 

  • Eneyskaya EV, Golubev AM, Kachurin AM, Savel’ev AN, Neustroev KN (1997) Transglycosylation activity of a-d-galactosidase from Trichoderma reesei. An investigation of the active site. Carbohydr Res 305:83–91

    Article  CAS  PubMed  Google Scholar 

  • Frandsen TP, Palcic MM, Svensson B (2002) Substrate recognition by three family 13 yeast α-glucosidases: evaluation of deoxygenated and conformationally biased isomaltosides. Eur J Biochem 269:728–734

    Article  CAS  PubMed  Google Scholar 

  • Hakamata W, Muroi M, Kadokura K, Nishio T, Oku T, Kimura A, Chiba S, Takatsukia A (2005) Aglycon specificity profiling of a-glucosidases using synthetic probes. Bioorg Med Chem Lett 15:1489–1492

    Article  CAS  PubMed  Google Scholar 

  • Halwachs W (1978) KM and Vmax from only one experiment. Biotechnol Bioeng 20:281–285

    Article  CAS  Google Scholar 

  • Howard S, Withers SG (1998) Labeling and identification of the postulated acid/base catalyst in the α-glucosidase from Saccharomyces cerevisiae using a novel bromoketone C-glycoside. Biogeosciences 37:3858–3864

    CAS  Google Scholar 

  • Kren V, Martinkova L (2001) The role of glycosidic residues in biological activity. Curr Med Chem 8:1303–1328

    Article  CAS  PubMed  Google Scholar 

  • Lee DS, Lee SH (2001) Genistein, a soy isoflavone, is a potent α-glucosidase inhibitor. FEBS Lett 501:84–86

    Article  CAS  PubMed  Google Scholar 

  • Levvy GA, Marsh CA (1954) Competing substrates in enzyme research. Science 119:337–338

    Article  CAS  PubMed  Google Scholar 

  • Lim EJ, Kang HJ, Jung HJ, Park EH (2007) Anti-angiogenic, anti-inflammatory and anti-nociceptive activity of 4-hydroxybenzyl alcohol. J Pharm Pharmacol 59:1235–1240

    Article  CAS  PubMed  Google Scholar 

  • MacGregor EA, Janecek S, Svensson B (2001) Relationship of sequence and structure to specificity in the α-amylase family of enzymes. Biochim Biophys Acta 1546:1–20

    Article  CAS  PubMed  Google Scholar 

  • McCarter JD, Withers SG (1996) Unequivocal identification of Asp-214 as the catalytic nucleophile of Saccharomyces cerevisiae alpha-glucosidase using 5-fluoro glycosyl fluorides. J Biol Chem 271:6889–6894

    Article  CAS  PubMed  Google Scholar 

  • Milosavic N, Prodanovic R, Jankov R (2008) Stereoselectivity of α-glucosidase from baker’s yeast for transglucosylation reaction. J Biotechnol 136:S361–S362

    Article  Google Scholar 

  • Nakai H, Okuyama M, Kim YM, Saburi W, Wongchawalit J, Mori H, Chiba S, Kimura A (2005) Molecular analysis of α-glucosidase belonging to GH-family 31. Biologia 16:131–135

    Google Scholar 

  • Nishizawa K, Amano Y, Isobe T, Nozaki K, Shiroishi M, Kanda T (2011) Aglycone specificity in transglycosylation of a xylanase produced from basidiomycete, Hypsizigus marmoreus during the mushroom cultivation. J Appl Glycosci 49:137–143

    Article  Google Scholar 

  • Ojha S, Mishra S, Kapoor S, Chand S (2013) Synthesis of hexyl α-glucoside and α-polyglucosides by a novel Microbacterium isolate. Appl Microbiol Biotechnol 97:5293–5301

    Article  CAS  PubMed  Google Scholar 

  • Okamura K, Sakamoto M, Ishikura T (1980) PS-5 inhibition of a beta-lactamase from Proteus vulgaris. J Antibiot 33(3):293–302

    Article  CAS  PubMed  Google Scholar 

  • Pavlović M, Dimitrijević A, Trbojević J, Milosavić N, Gavrović- Jankulović M, Bezbradica D, Veličković D (2013) Study of transglucosylation kinetics in enzymatic synthesis of benzyl alcohol glucoside by α-glucosidase from S.cerevisiae. Russ J Phys Chem A 87:2285–2288

    Article  Google Scholar 

  • Prodanovic RM, Milosavic N, Sladic D, Zlatovic M, Bozic B, Velickovic T (2005) Transglucosylation of hydroquinone catalysed by alpha-glucosidase from baker’s yeast. J Mol Catal B Enzym 35:142–146

    Article  CAS  Google Scholar 

  • Prodanovic R, Milosavic N, Jovanovic S, Cirkovic-Velickovic T, Vujcic Z, Jankov RM (2006a) Stabilization of α-glucosidase in organic solvents by immobilization on macroporous poly(GMA-co-EGDMA) with different surface characteristics. J Serb Chem Soc 71:339–347

    Article  CAS  Google Scholar 

  • Prodanovic R, Milosavic N, Jovanovic S, Prodanovic O, Cirkovic-Velickovic T, Vujcic Z, Jankov RM (2006b) Activity and stability of soluble and immobilized α-glucosidase from baker’s yeast in cosolvent systems. Biocatal Biotransform 24:195–200

    Article  CAS  Google Scholar 

  • Sato T, Nakagawa H, Kurosu J, Yoshida K, Tsugane T, Susumu S, Kirimura K, Kino K, Usami S (2000) α-Anomer-selective glucosylation of (+)-catechin by the crude enzyme, showing glucosyl transfer activity, of Xanthomona scampestris VW-9701. J Biosci Bioeng 90:625–630

    CAS  PubMed  Google Scholar 

  • Shai LJ, Masoko P, Mokgotho MP, Magano SR, Mogale AM, Boaduo N, Eloff JN (2010) Yeast α glucosidase inhibitory and antioxidant activities of six medicinal plants collected in Phalaborwa, South Africa. S Afr J Bot 76:465–470

    Article  Google Scholar 

  • Shin HK, Kong JY, Lee JD, Lee TH (2000) Syntheses of hydroxybenzyl-α-glucosides by amyloglucosidase-catalyzed transglycosylation. Biotechnol Lett 22:321–325

    Article  CAS  Google Scholar 

  • Velickovic D, Dimitrijevic A, Bihelovic F, Bezbradica D, Jankov R, Milosavic N (2011a) A highly efficient diastereoselective synthesis of α-isosalicin by maltase from Saccharomyces cerevisiae. Process Biochem 46:1698–1702

    Article  CAS  Google Scholar 

  • Velickovic D, Dimitrijevic A, Bihelovic F, Jankov R, Milosavic N (2011b) Study of the kinetic parameters for synthesis and hydrolysis of pharmacologically active salicin isomer catalyzed by baker’s yeast maltase. Russ J Phys Chem A 85:2317–2321

    Article  Google Scholar 

  • Velickovic D, Dimitrijevic A, Bihelovic F, Bezbradica D, Knezevic-Jugovic Z, Milosavic N (2012) Novel glycoside of vanillyl alcohol, 4-hydroxy-3-methoxybenzyl-alpha-d-glucopyranoside: study of enzymatic synthesis, in vitro digestion and antioxidant activity. Bioprocess Biosyst Eng 35:1107–1115

    Article  CAS  PubMed  Google Scholar 

  • Voragen GJA (1998) Technological aspects of food-related carbohydrates. Trends Food Sci Technol 9:328–335

    Article  CAS  Google Scholar 

  • Wehmeier UF, Piepersberg W (2004) Biotechnology and molecular biology of the α-glucosidase inhibitor acarbose. Appl Microbiol Biotechnol 63:613–625

    Article  CAS  PubMed  Google Scholar 

  • Yao X, Mauldin R, Byers L (2003) Multiple sugar binding sites in α-glucosidase. Biochim Biophys Acta 1645:22–29

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support of the Ministry of Science of the Republic of Serbia (project nos. 172049, 046010, and 451-03-00605/2012-16/51) and FP7 Reg Pot FCUB ERA, GA No. 256716.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milosavić Nenad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dušan, V., Nenad, M., Dejan, B. et al. The specificity of α-glucosidase from Saccharomyces cerevisiae differs depending on the type of reaction: hydrolysis versus transglucosylation. Appl Microbiol Biotechnol 98, 6317–6328 (2014). https://doi.org/10.1007/s00253-014-5587-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5587-9

Keywords

Navigation