Skip to main content

Advertisement

Log in

New aspects and strategies for methane mitigation from ruminants

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The growing demand for sustainable animal production is compelling researchers to explore the potential approaches to reduce emissions of greenhouse gases from livestock that are mainly produced by enteric fermentation. Some potential solutions, for instance, the use of chemical inhibitors to reduce methanogenesis, are not feasible in routine use due to their toxicity to ruminants, inhibition of efficient rumen function or other transitory effects. Strategies, such as use of plant secondary metabolites and dietary manipulations have emerged to reduce the methane emission, but these still require extensive research before these can be recommended and deployed in the livestock industry sector. Furthermore, immunization vaccines for methanogens and phages are also under investigation for mitigation of enteric methanogenesis. The increasing knowledge of methanogenic diversity in rumen, DNA sequencing technologies and bioinformatics have paved the way for chemogenomic strategies by targeting methane producers. Chemogenomics will help in finding target enzymes and proteins, which will further assist in the screening of natural as well chemical inhibitors. The construction of a methanogenic gene catalogue through these approaches is an attainable objective. This will lead to understand the microbiome function, its relation with the host and feeds, and therefore, will form the basis of practically viable and eco-friendly methane mitigation approaches, while improving the ruminant productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abecia L, Toral PG, Martín-García AI, Martínez G, Tomkins NW, Molina-Alcaide E, Newbold CJ, Yáñez-Ruiz DR (2012) Effect of bromochloromethane on methane emission, rumen fermentation pattern, milk yield, and fatty acid profile in lactating dairy goats. J Dairy Sci 95:2027–2036

    CAS  PubMed  Google Scholar 

  • Ackermann HW (2007) 5500 Phages examined in the electron microscope. Arch Virol 152:227–243

    CAS  PubMed  Google Scholar 

  • Ackermann HW, Kropinski AM (2007) Curated list of prokaryote viruses with fully sequenced genomes. Res Microbiol 158:555–566

    CAS  PubMed  Google Scholar 

  • Aluwong T, Wuyep P, Allam L (2011) Livestock–environment interactions: methane emissions from ruminants. Afr J Biotechnol 10:1265–1269

    CAS  Google Scholar 

  • Animut G, Puchala R, Goetsch A, Patra A, Sahlu T, Varel V, Wells J (2008) Methane emission by goats consuming diets with different levels of condensed tannins from lespedeza. Anim Feed Sci Technol 144:212–227

    CAS  Google Scholar 

  • Attwood G, McSweeney C (2008) Methanogen genomics to discover targets for methane mitigation technologies and options for alternative H2 utilization in the rumen. Aust J Exp Agr 48:28–37

    CAS  Google Scholar 

  • Attwood GT, Altermann E, Kelly WJ, Leahy SC, Zhang L, Morrison M (2011) Exploring rumen methanogen genomes to identify targets for methane mitigation strategies. Anim Feed Sci Technol 166:65–75

    Google Scholar 

  • Beauchemin KA, McGinn SM (2006a) Enteric methane emissions from growing beef cattle as affected by diet and level of intake. Can J Anim Sci 86:401–408

    CAS  Google Scholar 

  • Beauchemin KA, McGinn SM (2006b) Methane emissions from beef cattle: effects of fumaric acid, essential oil, and canola oil. J Anim Sci 84:1489–1496

    CAS  PubMed  Google Scholar 

  • Beauchemin K, McGinn SM, Petit HV (2007) Methane abatement strategies for cattle: lipid supplementation of diets. Can J Anim Sci 87:431–440

    CAS  Google Scholar 

  • Beauchemin K, Kreuzer M, O'Mara F, McAllister T (2008) Nutritional management for enteric methane abatement: a review. Aust J Exp Agr 48:21–27

    CAS  Google Scholar 

  • Benchaar C, Greathead H (2011) Essential oils and opportunities to mitigate enteric methane emissions from ruminants. Anim Feed Sci Technol 166–167:338–355

    Google Scholar 

  • Berg Miller ME, Yeoman CJ, Chia N, Tringe SG, Angly FE, Edwards RA, Flint HJ, Lamed R, Bayer EA, White BA (2012) Phage–bacteria relationships and CRISPR elements revealed by a metagenomic survey of the rumen microbiome. Environ Microbiol 14(1):207–227

    PubMed  Google Scholar 

  • Bhatt VD, Dande SS, Patil NV, Joshi CG (2013) Molecular analysis of the bacterial microbiome in the forestomach fluid from the dromedary camel (Camelus dromedaries). Mol Biol Rep 40:3363–3371

    Google Scholar 

  • Bhatta R, Uyeno Y, Tajima K, Takenaka A, Yabumoto Y, Nonaka I, Enishi O, Kurihara M (2009) Difference in nature of tannins on in vitro ruminal methane and volatile fatty acid production and on methanogenic archaea and protozoal populations. J Dairy Sci 92:5512–5522

    CAS  PubMed  Google Scholar 

  • Bhatta R, Saravanan M, Baruah L, Dhali A, Kolte A, Prasad CS (2013) Effect of graded levels of tropical leaves containing-secondary metabolites on rumen fermentation pattern, protozoa population and methanogenesis in vitro. Adv Anim Biosci 4(2):307

    Google Scholar 

  • Bird SH, Hegarty R, Woodgate R (2010) Modes of transmission of rumen protozoa between mature sheep. Anim Prod Sci 50:414–417

    Google Scholar 

  • Bodas R, Prieto N, García-González R, Andrés S, Giráldez FJ, López S (2012) Manipulation of rumen fermentation and methane production with plant secondary metabolites. Anim Feed Sci Technol 176:78–93

    CAS  Google Scholar 

  • Brask M, Lund P, Weisbjerg MR, Hellwing AL, Poulsen M, Larsen MK, Hvelplund T (2013) Methane production and digestion of different physical forms of rapeseed as fat supplement in dairy cows. J Dairy Sci 96:2356–2365

    CAS  PubMed  Google Scholar 

  • Brulc JM, Antonopoulos DA, Rincon MT, Band M, Bari A, Akraiko T, Hernandez A, Thimmapuram J, Henrissat B, Coutinho PM, Borovok I, Jindou S, Lamed R, Flint HJ, Bayer EA, White BA (2009) Gene-centric metagenomics of the fibre-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases. Proc Natl Acad Sci U S A 106:1948–1953

    CAS  PubMed Central  PubMed  Google Scholar 

  • Busquet M, Calsamiglia S, Ferret A, Carro MD, Kamel C (2005) Effect of garlic oil and four of its compounds on rumen microbial fermentation. J Dairy Sci 88:4393–4404

    CAS  PubMed  Google Scholar 

  • Calabrò S, Cutrignelli MI, Guglielmelli A, Tudisco R, Piccolo V, Grossi M, Infascelli F (2012) In vitro methane production from different feeds. Proc. 1st Int. Conf. on Animal Nutrition and Environment, Sep. 14–15, Khon Kaen (Thailand), pp 109–112

  • Callaway T, Martin S, Wampler J, Hill N, Hill G (1997) Malate content of forage varieties commonly fed to cattle. J Dairy Sci 80:1651–1655

    CAS  PubMed  Google Scholar 

  • Calsamiglia S, Busquet M, Cardozo P, Castillejos L, Ferret A (2007) Invited review: essential oils as modifiers of rumen microbial fermentation. J Dairy Sci 90:2580–2595

    CAS  PubMed  Google Scholar 

  • Cammack KM, Ellison MJ, Conant GC, Austin KJ, Lamberson WR (2013) Effect of diet type and feed efficiency status on rumen microbial populations in sheep. Cambridge University Press, Dublin, p 372, In 5th Greenhouse Gases and Animal Agriculture Conference

    Google Scholar 

  • Carro MD, Ranilla MJ (2003a) Effect of the addition of malate on in vitro rumen fermentation of cereal grains. Br J Nutr 89:181–188

    CAS  PubMed  Google Scholar 

  • Carro MD, Ranilla MJ (2003b) Influence of different concentrations of disodium fumarate on methane production and fermentation of concentrate feeds by rumen micro-organisms in vitro. Br J Nutr 90:617–623

    CAS  PubMed  Google Scholar 

  • Carro MD, Lebzien P, Rohr K (1992) Influence of yeast culture on the "in vitro" fermentation (Rusitec) of diets containing variable portions of concentrates. Anim Feed Sci Technol 37:209–220

    Google Scholar 

  • Carro MD, López S, Valdés C, Ovejero FJ (1999) Effect of dl-malate on mixed ruminal microorganism fermentation using the rumen simulation technique (RUSITEC). Anim Feed Sci Technol 79:279–288

    CAS  Google Scholar 

  • Carro MD, Ranilla MJ, Giráldez FJ, Mantecón AR (2006) Effects of malate supplementation on feed intake, digestibility, microbial protein synthesis and plasma metabolites in lambs fed a high-concentrate diet. J Anim Sci 84:405–410

    CAS  PubMed  Google Scholar 

  • Carulla JE, Kreuzer M, Machmüller A, Hess HD (2005) Supplementation of Acacia mearnsii tannins decreases methanogenesis and urinary nitrogen in forage-fed sheep. Aust J Agric Res 56:961–970

    Google Scholar 

  • Cheng YF, Edwards JE, Allison GG, Zhu W-Y, Theodorou MK (2009) Diversity and activity of enriched ruminal cultures of anaerobic fungi and methanogens grown together on lignocellulose in consecutive batch culture. Bioresour Technol 100:4821–4828

    CAS  PubMed  Google Scholar 

  • Cieslak A, Szumacher-Strabel M, Stochmal A, Oleszek W (2013) Plant components with specific activities against rumen methanogens. Animal 7:253–265

    PubMed  Google Scholar 

  • Clark H (2013) Nutritional and host effects on methanogenesis in the grazing ruminant. Animal 7:41–48

    CAS  PubMed  Google Scholar 

  • Clark H, Kelliher F, Pinares-Patino C (2011) Reducing CH4 emissions from grazing ruminants in New Zealand: challenges and opportunities. Asian Australas J Anim Sci 24:295–302

    CAS  Google Scholar 

  • Cook S, Maiti P, Chaves A, Benchaar C, Beauchemin K, McAllister T (2008) Avian (IgY) anti-methanogen antibodies for reducing ruminal methane production: in vitro assessment of their effects. Aust J Exp Agric 48:260–264

    CAS  Google Scholar 

  • Dai X, Yaxin Z, Luo Y, Song L, Liu D, Liu L, Chen F, Wang M, Li J, Zeng X, Dong Z, Hu S, Li L, Xu J, Huang L, Dong X (2012) Metagenomic insights into the fibrolytic microbiome in yak rumen. PLoS ONE 7(7):e40430

    CAS  PubMed Central  PubMed  Google Scholar 

  • Denman SE, Tomkins NW, McSweeney CS (2007) Quantitation and diversity analysis of ruminal methanogenic populations in response to the anti-methanogenic compound bromochloromethane. FEMS Microbiol Ecol 62:313–322

    CAS  PubMed  Google Scholar 

  • Ding X, Long R, Zhang Q, Huang X, Guo X, Mi J (2012) Reducing methane emissions and the methanogen population in the rumen of Tibetan sheep by dietary supplementation with coconut oil. Trop Anim Health Prod 44:1541–1545

    PubMed  Google Scholar 

  • Dohme F, Machmuller A, Estermann BL, Pfister P, Wasserfallen A, Kreuzer M (1999) The role of the rumen ciliate protozoa for methane suppression caused by coconut oil. Lett Appl Microbiol 29:187–192

    Google Scholar 

  • Dohme F, Machmüller A, Wasserfallen A, Kreuzer M (2000) Comparative efficiency of various fats rich in medium-chain fatty acids to suppress ruminal methanogenesis as measured with RUSITEC. Can J Anim Sci 80:473–484

    CAS  Google Scholar 

  • Dohme F, Machmüller A, Wasserfallen A, Kreuzer M (2001) Ruminal methanogenesis as influenced by individual fatty acids supplemented to complete ruminant diets. Lett Appl Microbiol 32:47–51

    CAS  PubMed  Google Scholar 

  • Eckard R, Grainger C, De Klein C (2010) Options for the abatement of methane and nitrous oxide from ruminant production: a review. Livest Sci 130:47–56

    Google Scholar 

  • FAO (2010) Greenhouse gas emissions from the dairy sector. A life cycle assessment. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Foley P, Kenny D, Callan J, Boland T, O'Mara F (2009a) Effect of dl-malic acid supplementation on feed intake, methane emission, and rumen fermentation in beef cattle. J Anim Sci 87:1048–1057

    CAS  PubMed  Google Scholar 

  • Foley PA, Kenny DA, Lovett DK, Callan JJ, Boland TM, O'Mara FP (2009b) Effect of dl-malic acid supplementation on feed intake, methane emissions, and performance of lactating dairy cows at pasture. J Dairy Sci 92:3258–3264

    CAS  PubMed  Google Scholar 

  • Fonty G, Joblin K, Chavarot M, Roux R, Naylor G, Michallon F (2007) Establishment and development of ruminal hydrogenotrophs in methanogen-free lambs. Appl Environ Microbiol 73:6391–6403

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gandra JR, Nunes Gil PC, Consolo NRB, Gandra ERS, Gobesso AAO (2012) Addition of increasing doses of ricinoleic acid from castor oil (Ricinus communis L.) in dites of Nellore steers in feedlots. J Anim Feed Sci 21:566–576

    Google Scholar 

  • García-Martínez R, Ranilla MJ, Tejido ML, Carro MD (2005) Effects of disodium fumarate on in vitro rumen microbial growth, methane production and fermentation of diets differing in their forage:concentrate ratio. Br J Nutr 94:71–77

    PubMed  Google Scholar 

  • Giraldo LA, Ranilla MJ, Tejido ML, Carro MD (2007a) Efecto de la sustitución de Brachiaria dictyoneura or Acacia mangium sobre la fermentación ruminal in vitro (Effects of substitution of Brachiaria dictyoneura by Acacia mangiumon in vitro ruminal fermentation). Rev Colomb Cien Pecuarias 29:39–46

  • Giraldo LA, Ranilla MJ, Tejido ML, Carro MD (2007b) Influence of exogenous fibrolytic enzyme and fumarate on methane production, microbial growth and fermentation in Rusitec fermenters. Br J Nutr 98:753–761

    CAS  PubMed  Google Scholar 

  • Goel G, Puniya AK, Aguilar CN, Singh K (2005) Interaction of gut microflora with tannins in feeds. Naturwissenschaften 92:497–503

    CAS  PubMed  Google Scholar 

  • Gómez JA, Tejido ML, Carro MD (2005) Mixed rumen microorganisms growth and rumen fermentation of two diets in RUSITEC fermenters: influence of disodium malate supplementation. Br J Nutr 93:479–484

    PubMed  Google Scholar 

  • Grainger C, Beauchemin KA (2011) Can enteric methane emissions from ruminants be lowered without lowering their production? Anim Feed Sci Technol 166–167:308–320

    Google Scholar 

  • Guglielmelli A, Calabrò S, Primi R, Carone F, Cutrignelli MI, Tudisco R, Piccolo G, Ronchi B, Danieli PP (2011) In vitro fermentation patterns and methane production of sainfoin (Onobrychis viciifolia Scop.) hay with different condensed tannin contents. Grass Forage Sci 66:488–500

    Google Scholar 

  • Haisan J, Sun Y, Beauchemin K, Guan L, Duval S, Barreda DR, Oba M (2013) Effects of feeding 3-nitrooxypropanol, at varying levels, on methane emissions and rumen fermentation in lactating dairy cows. Adv Anim Biosci 4(2):326

    Google Scholar 

  • Hegarty R, Bird S, Vanselow B, Woodgate R (2010) Effects of the absence of protozoa from birth or from weaning on the growth and methane production of lambs. Br J Nutr 100:1220–1227

    Google Scholar 

  • Hess H, Tiemann T, Noto F, Carulla J, Kreuzer M (2006) Strategic use of tannins as means to limit methane emission from ruminant livestock. International Congress Series Elsevier, pp 164–167

  • Hess M, Sczybra A, Egan R, Kim TW, Chokhawala H, Schroth G, Luo S, Clark DS, Chen F, Zhang T, Mackie RI, Pennacchio LA, Tringe SG, Visel A, Woyke T, Wang Z, Rubin EM (2011) Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 331:463–467

    CAS  PubMed  Google Scholar 

  • Holtshausen L, Chaves A, Beauchemin K, McGinn S, McAllister T, Odongo N, Cheeke P, Benchaar C (2008) Feeding saponin-containing Yucca schidigera and Quillaja saponaria to decrease enteric methane production in dairy cows. J Dairy Sci 92:2809–2821

    Google Scholar 

  • Hook SE, Northwood KS, Wright AD, McBride BW (2009) Long-term monensin supplementation does not significantly affect the quantity or diversity of methanogens in the rumen of the lactating dairy cow. Appl Environ Microbiol 75:374–380

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hook SE, Wright AD, McBride BW (2010) Methanogens: methane producers of the rumen and mitigation strategies. Hindawi Publishing Corporation, Archaea. doi:10.1155/2010/945785, Article ID 945785

    Google Scholar 

  • Jakhesara S, Koringa P, Ramani U, Ahir V, Tripathi A, Soni P, Singh K, Bhatt V, Patel J, Patel M (2010) Comparative study of tannin challenged rumen microbiome in goat using high throughput sequencing technology. Dev Microbiol Mol Biol 1:95–106

    Google Scholar 

  • Janssen PH (2010) Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics. Anim Feed Sci Technol 160:1–22

    CAS  Google Scholar 

  • Janssen PH, Kirs M (2008) Structure of the archaeal community of the rumen. Appl Environ Microbiol 74:3619–3625

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jayanegera A, Leiber F, Kreuzer M (2011) Meta-analysis of the relationship between dietary tannin level and methane formation in ruminants from in vivo and in vitro experiments. J Anim Physiol Anim Nutr (Berl) 96(3):365–375

    Google Scholar 

  • Jeyanathan J, Kirs M, Rominus RS, Hoskin SO, Jassen PH (2011) Methanogen community structure in the rumens of farmed sheep, cattle and red deer fed different diets. FEMS Microbiol Ecol 74:311–326

    Google Scholar 

  • Joblin K (1999) Ruminal acetogens and their potential to lower ruminant methane emissions. Aust J Agric Res 50:1307–1313

    Google Scholar 

  • Joblin K (2005) Methanogenic archaea. In: Makker H, McSweeney C (eds) Methods in gut microbial ecology for ruminants. Springer, Dordrecht, pp 47–53

    Google Scholar 

  • Johnson K, Johnson DE (1995) Methane emissions from cattle. J Anim Sci 73:2483–2492

    CAS  PubMed  Google Scholar 

  • Jordan E, Kenny D, Hawkins M, Malone R, Lovett D, O'Mara F (2006a) Effect of refined soy oil or whole soybeans on intake, methane output, and performance of young bulls. J Anim Sci 84:2418–2425

    CAS  PubMed  Google Scholar 

  • Jordan E, Lovett D, Monahan F, Callan J, Flynn B, O'Mara F (2006b) Effect of refined coconut oil or copra meal on methane output and on intake and performance of beef heifers. J Anim Sci 84:162–170

    CAS  PubMed  Google Scholar 

  • Kamel C, Greathead HMR, Tejido ML, Ranilla MJ, Carro MD (2008) Effect of allicin and diallyldisulfide on in vitro rumen fermentation of a mixed diet. Anim Feed Sci Technol 145:351–363

    CAS  Google Scholar 

  • Kamra DN, Pawar M, Singh B (2012) Effect of plant secondary metabolites on rumen methanogens and methane emissions by ruminants. Diet Phytochemicals Microbes 351–370

  • Key N, Tallard G (2012) Mitigating methane emissions from livestocks: a global analysis of sector policies. Clim Chang 112:387–414

    Google Scholar 

  • Knight T, Ronimus RS, Dey D, Tootill C, Naylor G, Evans P, Molano G, Smith A, Tavendale M, Pinares-Patino CS, Clark H (2011) Chloroform decreases rumen methanogenesis and methanogen populations without altering rumen function in cattle. Anim Feed Sci Technol 166–167:101–112

    Google Scholar 

  • Kong Y, He M, McAlister T, Seviour R, Forster R (2010) Quantitative fluorescence in situ hybridization of microbial communities in the rumens of cattle fed different diets. Appl Environ Microbiol 76(20):6933–6938

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kongmun P, Wanapat M, Pakdee P, Navanukraw C (2010) Effect of coconut oil and garlic powder on in vitro fermentation using gas production technique. Livest Sci 127:38–44

    Google Scholar 

  • Kumar S, Puniya AK, Puniya M, Dagar S, Sirohi S, Singh K, Griffith G (2009) Factors affecting rumen methanogens and methane mitigation strategies. World J Microbiol Biotechnol 25:1557–1566

    Google Scholar 

  • Kumar S, Dagar SS, Puniya AK (2012) Isolation and characterization of methanogens from rumen of Murrah buffalo. Ann Microbiol 62:345–350

    CAS  Google Scholar 

  • Kumar S, Dagar SS, Puniya AK, Upadhyay RC (2013a) Changes in methane emission, rumen fermentation in response to diet and microbial interactions. Res Vet Sci 94:263–268

    CAS  PubMed  Google Scholar 

  • Kumar S, Dagar SS, Sirohi SK, Upadhyay RC, Puniya AK (2013b) Microbial profiles, in vitro gas production, dry matter digestibility based on various ratios of roughage to concentrate. Ann Microbiol 63:541–545

    CAS  Google Scholar 

  • Lascano CE, Cárdenas E (2010) Alternatives for methane emission mitigation in livestock systems. Rev Bras Zootec 39:175–182

    Google Scholar 

  • Leahy SC, Kelly WJ, Altermann E, Ronimus RS, Yeoman CJ, Pacheco DM, Li D, Kong Z, McTavish S, Sang C (2010) The genome sequence of the rumen methanogen Methanobrevibacter ruminantium reveals new possibilities for controlling ruminant methane emissions. PLoS One 5:e8926

  • Leahy SC, Kelly WJ, Li D, Altermann E, Lambie SC, Cox F, Attwood GT (2013) The complete genome sequence of Methanobrevibacter sp. AbM4. Stand Genomic Sci 8:2

    Google Scholar 

  • Lee J-H, Kumar S, Lee G-H, Chang D-H, Rhee M-S, Kim D-S, Yoon M-H, Kim B-C (2013a) Methanobrevibacter boviskoreani sp. nov., isolated from the rumen of Korean native cattle. Int J Syst Evol Microbiol (in press) doi 10.1007/s13213-012-0501-0

  • Lee J-H, Rhee M-S, Kumar S, Lee G-H, Chang D-H, Kim D-S, Choi S-H, Lee D-W, Kim B-C (2013b) Genome sequence of Methanobrevibacter sp. strain JH1, isolated from rumen of Korean native cattle. Genome Announc 1:e00002–e00013

  • Li XY, Jin LJ, McAllister TA, Stanford K, Xu JY, Lu YN, Zhen YH, Sun YX, Xu YP (2007) Chitosan–alginate microcapsules for oral delivery of egg yolk immunoglobulin (IgY). J Agric Food Chem 55:2911–2917

    CAS  PubMed  Google Scholar 

  • Li RW, Connor EE, Li C, Baldwin RL, Sparks ME (2012) Characterization of the rumen microbiota of pre-ruminant calves using metagenomic tools. Environ Microbiol 14(1):129–139

    PubMed  Google Scholar 

  • Ludemann CI, Eckard RJ, Smith KF (2013) Potential effects of time of cutting and plant genotypes and gas production from fermentation of perennial ryegrass (Lolium perenne) using dairy cow rumen. Adv Anim Biosci 4(2):424

    Google Scholar 

  • Lunsin R, Wanapat M, Yuangklang C, Rowlinson P (2012) Effect of rice bran oil supplementation on rumen fermentation, milk yield and milk composition in lactating dairy cows. Livest Sci 145:167–173

    Google Scholar 

  • Luo Y, Pfister P, Leisinger T, Wasserfallen A (2001) The genome of archaeal prophage ψm100 encodes the lytic enzyme responsible for autolysis of Methanothermobacter wolfeii. J Bacteriol 183:5788–5792

    Google Scholar 

  • Lynch H, Martin S (2002) Effects of Saccharomyces cerevisiae culture and Saccharomyces cerevisiae live cells on in vitro mixed ruminal microorganism fermentation. J Dairy Sci 85:2603–2608

    Google Scholar 

  • Machmüller A, Kreuzer M (1999) Methane suppression by coconut oil and associated effects on nutrient and energy balance in sheep. Can J Anim Sci 79:65–72

    Google Scholar 

  • Martin SA, Macy J (1985) Effects of monensin, pyromellitic diimide and 2-bromoethanesulfonic acid on rumen fermentation in vitro. J Anim Sci 60:544

    CAS  PubMed  Google Scholar 

  • Martin S, Nisbet D (1990) Effects of Aspergillus oryzae fermentation extract on fermentation of amino acids, bermudagrass and starch by mixed ruminal microorganisms in vitro. J Anim Sci 68:2142–2149

    Google Scholar 

  • Martin SA, Streeter M (1995) Effect of malate on in vitro mixed ruminal microorganism fermentation. J Anim Sci 73:2141–2145

    CAS  PubMed  Google Scholar 

  • Martin C, Morgavi DP, Doreau M (2010) Methane mitigation in ruminants: from microbe to the farm scale. Animal 4:351–365

    CAS  PubMed  Google Scholar 

  • Martínez ME, Ranilla MJ, Tejido ML, Ramos S, Carro MD (2010) The effect of the diet fed to donor sheep on in vitro methane production and ruminal fermentation of diets of variable composition. Anim Feed Sci Technol 158:126–135

    Google Scholar 

  • Martinez-Fernndez G, Arco A, Abecia L, Cantalapiedra-Hijar G, Moline-Alcaide E, Martin-Garcia AI, Kindermann M, Duval S, Yanez-ruiz DR (2013) The addition of ethyl-3-nitrooxy propionate and 3-nitrooxypropanol in the diet of sheep substantially reduces methane emissions and the effect persists over a month. Adv Anim Biosci 4(2):368

    Google Scholar 

  • Mateos I, Ranilla MJ, Tejido ML, Saro C, Kamel C, Carro MD (2013) The influence of diet on the effectiveness of garlic oil and cinnamaldehyde to manipulate in vitro ruminal fermentation and methane production. Anim Prod Sci 53:299–307

    CAS  Google Scholar 

  • Mathieu F, Jouany JP, Senaud J, Bohatier J, Bertin G, Mercier M (1996) The effect of Saccharomyces cerevisiae and Aspergillus oryzae on fermentations in the rumen of faunated and defaunated sheep; protozoal and probiotic interactions. Reprod Nutr Devel 36:271–287

  • May C, Payne AL, Stewart PL, Edgar JA (1995) A delivery system for agents. International Patent Application No. PCT/AU95/00733

  • McAllister TA, Newbold CJ (2008) Redirecting rumen fermentation to reduce methanogenesis. Aust J Exp Agric 48:7–13

    CAS  Google Scholar 

  • McCrabb GJ, Berger KT, Magner T, May C, Hunter RA (1997) Inhibiting methane production in Brahman cattle by dietary supplementation with a novel compound and the effects on growth. Aust J Agric Res 48:323–329

    CAS  Google Scholar 

  • Meale S, Chaves A, Baah J, McAllister T (2012) Methane production of different forages in in vitro ruminal fermentation. Asian Austral J Anim Sci 25:86–91

    CAS  Google Scholar 

  • Morgavi DP, Jouany JP, Martin C (2008) Changes in methane emission and rumen fermentation parameters induced by refaunation in sheep. Aust J Exp Agric 48:69–72

    CAS  Google Scholar 

  • Morgavi DP, Kelly WJ, Janssen PH, Attwood GT (2013) Rumen microbial (meta)genomics and its application to ruminant production. Animal 7:184–201

    CAS  PubMed  Google Scholar 

  • Moss AR, Jouany JP, Newbold J (2000) Methane production by ruminants: its contribution to global warming. Ann Zootech 49:231–254

    CAS  Google Scholar 

  • Nevel CV, Demeyer D (1995) Feed additives and other interventions for decreasing methane emissions. Biotech Anim Feeds Anim Feeding 17:329–349

    Google Scholar 

  • Newbold C, McIntosh F, Wallace R (1998) Changes in the microbial population of a rumen-simulating fermenter in response to yeast culture. Can J Anim Sci 78:241–244

    Google Scholar 

  • Niderkorn V, Baumont R, Le Morvan A, Macheboeuf D (2011) Occurrence of associative effects between grasses and legumes in binary mixtures on in vitro rumen fermentation characteristics. J Anim Sci 89:1138–1145

    CAS  PubMed  Google Scholar 

  • Odongo N, Or-Rashid M, Kebreab E, France J, McBride B (2007) Effect of supplementing myristic acid in dairy cow rations on ruminal methanogenesis and fatty acid profile in milk. J Dairy Sci 90:1851–1858

    CAS  PubMed  Google Scholar 

  • O'Kelly J, Spiers W (1992) Effect of monensin on methane and heat productions of [Brahman] steers fed lucerne hay either ad libitum or at the rate of 250 g per hour. Aust J Agric Res 43:1789–1793

    Google Scholar 

  • Patra AK (2012) Enteric methane mitigation technologies for ruminant livestock: a synthesis of current research and future directions. Environ Monit Assess 184:1929–1952

    CAS  PubMed  Google Scholar 

  • Patra AK, Saxena J (2009a) Dietary phytochemicals as rumen modifiers: a review of the effects on microbial populations. Anton Leeuw 96:363–375

    CAS  Google Scholar 

  • Patra AK, Saxena J (2009b) The effect and mode of action of saponins on the microbial populations and fermentation in the rumen and ruminant production. Nutr Res Rev 22:204–219

    CAS  PubMed  Google Scholar 

  • Patra AK, Yu Z (2012) Effects of essential oils on methane production and fermentation by, and abundance and diversity of, rumen microbial populations. Appl Environ Microbiol 78:4271–4280

    CAS  PubMed Central  PubMed  Google Scholar 

  • Patra AK, Kamra DN, Bhar R, Kumar R, Agarwal N (2011) Effect of Terminalia chebula and Allium sativum on in vivo methane emission by sheep. J Anim Physiol Anim Nutr 95:187–191

  • Perez AR, Beauchemin KA, Okine EK, Duval SM (2013) Effect of 3-nitrooxypropanol on methane production using rumen simulation technique (Rusitec). Adv Anim Biosci 4(2):389

    Google Scholar 

  • Pfister P, Wasserfallen A, Stettler R, Leisinger T (1998) Molecular analysis of Methanobacterium phage ΨM2. Mol Microbiol 30:233–244

    Google Scholar 

  • Pinares-Patiño CS, Ulyatt MJ, Lassey KR, Barry TN, Holmes CW (2003) Persistence of differences between sheep in methane emission under generous grazing conditions. J Agric Sci 140:227–233

    Google Scholar 

  • Pinares-Patiño CS, Ebrahimi SH, McEwan JC, Dodds KG, Clark H, Luo D (2011) Is rumen retention time implicated in sheep differences in methane emissions? Proc N Z Soc Anim Prod 71:219–222

    Google Scholar 

  • Pope PB, Denman SE, Jones M, Tringe SG, Barry K, Malfatti SA, McHardy AC, Cheng J-F, Hugenholtz P, McSweeney CS, Morrison M (2010) Adaptation to herbivory by the Tammar wallaby includes bacterial and glycoside hydrolase profiles different from other herbivores. Proc Natl Acad Sci 107(33):14793–14798

    CAS  PubMed  Google Scholar 

  • Pope PB, Ak M, Gregor I, Smith W, Sundset MA, McHardy AC, Morrison M, Eijsink VGH (2012) Metagenomics of the Svalbard reindeer rumen microbiome reveals abundance of polysaccharide utilization loci. PLoS ONE 7(6):e38571

    CAS  PubMed Central  PubMed  Google Scholar 

  • Poulsen M, Schwab C, Jensen BB, Engberg RM, Spang A, Canibe N, Hojberg O, Milinovich G, Fragner L, Schleper C, Weckwerth W, Lund P, Schramm A, Urich T (2013) Methylotrophic methanogenic Thermoplasmata implicated in reduced methane emission from bovine rumen. Nat Commun 4:1428

    PubMed  Google Scholar 

  • Qi M, Wang P, O'Toole N, Barboza PS, Ungerfeld E, Leigh MB, Selinger LB, Butler G, Tsang A, McAllister TA, Forster RJ (2011) Snapshot of the eukaryotic gene expression in muskoxen rumen — a metatranscriptomics approach. PLos One 6:e20521

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ramirez-Restrepo C, Barry T (2005) Alternative temperate forages containing secondary compounds for improving sustainable productivity in grazing ruminants. Anim Feed Sci Technol 120:179–201

    Google Scholar 

  • Ross EM, Moate PJ, Bath CR, Davidson SE, Sawbridge TI, Guthridge KM, Cocks BG, Hayes BJ (2012) High throughput whole rumen metagenome profiling using untargeted massively parallel sequencing. BMC Genet 13:53

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ross EM, Moate PJ, Marett L, Cocks BG, Hayes BJ (2013) Investigating the effect of two methane-mitigating diets on the rumen microbiome using massively parallel sequencing. J Dairy Sci 96:6030–6046

    CAS  PubMed  Google Scholar 

  • Russell JB (2002) Rumen microbiology and its role in rumen nutrition, 1st edn. Russell, Ithaca

    Google Scholar 

  • Scheehle EA, Kruger D (2006) Global anthropogenic methane and nitrous oxide emissions. Energy J 22:33–44

    Google Scholar 

  • Sharma A, Chaudhary PP, Sirohi SK, Saxena J (2011) Structure modeling and prediction of NADP oxidoreductase enzyme from Methanobrevibacter smithii. Bioinformation 6:15–19

    Google Scholar 

  • Shin EC, Choi BR, Lim WJ, Hong SY, An CL, Cho KM, Kim YK, An JM, Kang JM, Lee SS, Kim H, Yun HD (2004) Phylogenetic analysis of archaea in three fractions of cow rumen based on the 16S rDNA sequence. Anareobe 10:313–319

    CAS  Google Scholar 

  • Singh KM, Ahir VB, Tripathi AK, Ramani UV, Sajnani M, Koringa PG, Jakhesara SJ, Pandya PR, Rank DN, Murty DS, Kothari RK, Joshi CG (2012a) Metagenomic analysis of Surti buffalo (Bubalus bubalis) rumen: a preliminary study. Mol Biol Rep 39:4841–4848

  • Singh KM, Jakhesara SJ, Koringa PG, Rank DN, Joshi CG (2012b) Metagenomic analysis of virulence-associated and antibiotic resistance genes of microbes in rumen of Indian buffalo (Bubalus bubalis). Gene 506:146–151

    Google Scholar 

  • Soliva CR, Meile L, Cieslak A, Kreuzer M, Machmuller A (2004) Rumen simulation technique study on the interactions of dietary lauric and myristic acid supplementation in suppressing ruminal methanogenesis. Br J Nutr 92:689–700

    CAS  PubMed  Google Scholar 

  • Staerfl SM, Zeitz JO, Kreuzer M, Soliva CR (2012) Methane conversion rate of bulls fattened on grass or maize silage as compared with the IPCC default values, and the long-term methane mitigation efficiency of adding acacia tannin, garlic, maca and lupine. Agric Ecosyst Environ 148:111–120

    CAS  Google Scholar 

  • Stanton TB (2007) Prophage-like gene transfer agents: novel mechanisms of gene exchange for Methanococcus, Desulfovibrio, Brachyspira, and Rhodobacter species. Anaerobe 13:43–49

    Google Scholar 

  • Tajima K, Nagamine T, Matsui H, Nakamura M, Aminov RI (2001) Phylogenetic anaylsis of archaeal 16S rRNA libraries from the rumen suggests the existence of a novel group of archaea not associated with known methanogens. FEMS Microbiol Lett 200:67–72

    CAS  PubMed  Google Scholar 

  • Tavendale MH, Meagher LP, Pacheco D, Walker N, Attwood GT, Sivakumaran S (2005) Methane production from in vitro rumen incubations with Lotus pedunculatus and Medicago sativa, and effects of extractable condensed tannin fractions on methanogenesis. Anim Feed Sci Technol 123:403–419

    Google Scholar 

  • Teather RM, Forster JR (1998) Manipulating the rumen microflora with bacteriocins to improve ruminant production. Can J Anim Sci 78:57–69

    CAS  Google Scholar 

  • Tejido ML, Ranilla MJ, García-Martínez R, Carro MD (2005) In vitro microbial growth and rumen fermentation of different diets as affected by the addition of disodium malate. Anim Sci 81:31–38

    CAS  Google Scholar 

  • Tezel U, Pierson JA, Pavlostathis SG (2006) Fate and effect of quaternary ammonium compounds on a mixed methanogenic culture. Water Res 40:3660–3668

    CAS  PubMed  Google Scholar 

  • Thorpe A (2009) Enteric fermentation and ruminant eructation: the role (and control?) of methane in the climate change debate. Clim Chang 93:407

    CAS  Google Scholar 

  • Tiemann TT, Lascano CE, Kreuzer M, Hess HD (2008) The ruminal degradability of fibre explains part of the low nutritional value and reduced methanogenesis in highly tanniniferous tropical legumes. J Sci Food Agric 88:1794–1803

    CAS  Google Scholar 

  • Ungerfeld E, Forster RJ (2011) A meta-analysis of malate effects on methanogenesis in ruminal batch cultures. Anim Feed Sci Technol 166–167:282–290

    Google Scholar 

  • Ungerfeld E, Rust SR, Broone DR, Liu Y (2004) Effects of several inhibitors on pure cultures of ruminal methanogens. Appl Microbiol 97:520–526

    CAS  Google Scholar 

  • Ungerfeld E, Kohn R, Wallace R, Newbold C (2007) A meta-analysis of fumarate effects on methane production in ruminal batch cultures. J Anim Sci 85:2556–2563

    CAS  PubMed  Google Scholar 

  • Van Nevel C, Demeyer D (1996) Control of rumen methanogenesis. Environ Monit Assess 42:73–97

    PubMed  Google Scholar 

  • Van Zijderveld SM, Fonken B, Dijkstra J, Gerrits WJ, Perdok HB, Fokkink W, Newbold JR (2011) Effects of a combination of feed additives on methane production, diet digestibility, and animal performance in lactating dairy cows. J Dairy Sci 94:1445–1454

    PubMed  Google Scholar 

  • Waghorn G, Woodward S, Tavendale M, Clark D (2006) Inconsistencies in rumen methane production—effects of forage composition and animal genotype. Int Congr Ser 1293:115–118

    Google Scholar 

  • Wanapat M, Kongmun P, Poungchompu O, Cherdthong A, Khejornsart P, Pilajun R, Kaenpakdee S (2012) Effects of plants containing secondary compounds and plant oils on rumen fermentation and ecology. Trop Anim Health Prod 44:399–405

    PubMed  Google Scholar 

  • Wedlock D, Pedersen G, Denis M, Dey D, Janssen P, Buddle B (2010) Development of a vaccine to mitigate greenhouse gas emissions in agriculture: vaccination of sheep with methanogen fractions induces antibodies that block methane production in vitro. N Z Vet J 58:29–36

    CAS  PubMed  Google Scholar 

  • Wedlock DN, Janssen PH, Leahy SC, Shu D, Buddle BM (2013) Progress in the development of vaccines against rumen methanogens. Animal 7:244–252

    PubMed  Google Scholar 

  • Williams YJ, Rea SM, Popovski S, Pimm CL, Williams AJ, Toovey AF, Skillman LC, Wright ADG (2008) Reponses of sheep to a vaccination of entodinial or mixed rumen protozoal antigens to reduce rumen protozoal numbers. Br J Nutr 99:100–109

    CAS  PubMed  Google Scholar 

  • Williams YJ, Popovski S, Rea SM, Skillman LC, Toovey AF, Northwood KS, Wright AD (2009) A vaccine against rumen methanogens can alter the composition of archaeal populations. Appl Environ Microbiol 75:1860–1866

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wood T, Wallace R, Rowe A, Price J, Yáñez-Ruiz D, Murray P, Newbold C (2009) Encapsulated fumaric acid as a feed ingredient to decrease ruminal methane emissions. Anim Feed Sci Technol 152:62–71

    Google Scholar 

  • Woodward SL, Waghorn GC, Ulyatt MJ, Lassey KR (2001) Early indications that feeding Lotus will reduce methane emissions from ruminants. Proc New Zealand Soc Anim Prod 61:23–26

    Google Scholar 

  • Wright A, Kennedy P, O'Neill C, Toovey A, Popovski S, Rea S, Pimm C, Klein L (2004) Reducing methane emissions in sheep by immunization against rumen methanogens. Vaccine 22:3976–3985

    CAS  PubMed  Google Scholar 

  • Zhao S, Wang J, Bu D, Liu K, Zhu Y, Dog Z, Yu Z (2010) Novel glycoside hydrolases identified by screening a chinese Holstein dairy cow rumen-derived metagenome library. Appl Environ Microbiol 76:6701–6705

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou M, Hernandez-Sanabria E, Guan LL (2009) Assessment of the microbial ecology of ruminal methanogens in cattle with different feed efficiencies. Appl Environ Microbiol 75:6524–6533

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou YY, Mao HL, Jiang F, Wang JK, Liu JX, McSweeney CS (2011) Inhibition of rumen methanogenesis by tea saponins with reference to fermentation pattern and microbial communities in Hu sheep. Anim Feed Sci Technol 166:93–100

    Google Scholar 

  • Zhou X, Meile L, Kreuzer M, Zeitz JO (2013) The effect of lauric acid on methane production and cell viability of Methanobrevibacter ruminantium. Adv Anim Biosci 4(2):458

    Google Scholar 

Download references

Acknowledgments

We thankfully acknowledge the DBT-CREST fellowship 2011–2012 that enabled Anil K. Puniya to visit Aberystwyth University (UK), which greatly helped in developing the manuscript in collaboration with overseas experts. We are also thankful to NICRA and VTCC ongoing network programmes at NDRI (ICAR), Karnal (India), for providing the necessary support for writing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Kumar Puniya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, S., Choudhury, P.K., Carro, M.D. et al. New aspects and strategies for methane mitigation from ruminants. Appl Microbiol Biotechnol 98, 31–44 (2014). https://doi.org/10.1007/s00253-013-5365-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5365-0

Keywords

Navigation