Skip to main content
Log in

Recovery of microbial diversity and activity during bioremediation following chemical oxidation of diesel contaminated soils

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

To improve the coupling of in situ chemical oxidation and in situ bioremediation, a systematic analysis was performed of the effect of chemical oxidation with Fenton's reagent, modified Fenton's reagent, permanganate, or persulfate, on microbial diversity and activity during 8 weeks of incubation in two diesel-contaminated soils (peat and fill). Chemical oxidant and soil type affected the microbial community diversity and biodegradation activity; however, this was only observed following treatment with Fenton's reagent and modified Fenton's reagent, and in the biotic control without oxidation. Differences in the highest overall removal efficiencies of 69 % for peat (biotic control) and 59 % for fill (Fenton's reagent) were partially explained by changes in contaminant soil properties upon oxidation. Molecular analysis of 16S rRNA and alkane monooxygenase (alkB) gene abundances indicated that oxidation with Fenton's reagent and modified Fenton's reagent negatively affected microbial abundance. However, regeneration occurred, and final relative alkB abundances were 1–2 orders of magnitude higher in chemically treated microcosms than in the biotic control. 16S rRNA gene fragment fingerprinting with DGGE and prominent band sequencing illuminated microbial community composition and diversity differences between treatments and identified a variety of phylotypes within Alpha-, Beta-, and Gammaproteobacteria. Understanding microbial community dynamics during coupled chemical oxidation and bioremediation is integral to improved biphasic field application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baek KH, Voon BD, Cho DH, Kim BH, Oh HM, Kim HS (2009) Monitoring bacterial population dynamics using real-time PCR during the bioremediation of crude-oil-contaminated soil. J Microbiol Biotechnol 19(4):339–345. doi:10.4014/jmb.0807.423

    Article  CAS  PubMed  Google Scholar 

  • Buyuksonmez F, Hess T, Crawford R, Paszczynski A, Watts R (1999) Optimization of simultaneous chemical and biological mineralization of perchloroethylene. Appl Environ Microbiol 65(6):2784

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chapelle FH, Bradley PM, Casey CC (2005) Behavior of a chlorinated ethene plume following source-area treatment with Fenton's reagent. Ground Water Monit Remediat 25(2):131–141. doi:10.1111/j.1745-6592.2005.0020.x

    CAS  Google Scholar 

  • Crimi ML, Siegrist RL (2003) Geochemical effects on metals following permanganate oxidation of DNAPLs. Ground Water 41(4):458–469

    Article  CAS  PubMed  Google Scholar 

  • Cuypers C, Pancras T, Grotenhuis T, Rulkens W (2002) The estimation of PAH-bioavailability in contaminated sediments using hydroxypropyl-b-cyclodextrin and Triton X-100 extraction techniques. Chemosphere 45:1235–1245

    Article  Google Scholar 

  • Do SH, Jo JH, Jo YH, Lee HK, Kong SH (2009) Application of a peroxymonosulfate/cobalt (PMS/Co(II)) system to treat diesel-contaminated soil. Chemosphere 77(8):1127–1131. doi:10.1016/j.chemosphere.2009.08.061

    Article  CAS  PubMed  Google Scholar 

  • dos Santos HF, Cury JC, do Carmo FL, dos Santos AL, Tiedje J, van Elsas JD, Rosado AS, Peixoto RS (2011) Mangrove bacterial diversity and the impact of oil contamination revealed by pyrosequencing: bacterial proxies for oil pollution. PLoS One 6(3)

  • Eichner CA, Erb RW, Timmis KN, Wagner-Dobler I (1999) Thermal gradient gel electrophoresis analysis of bioprotection from pollutant shocks in the activated sludge microbial community. Appl Environ Microbiol 65(1):102–109

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology 88(6):1354–1364

    Article  PubMed  Google Scholar 

  • Gates DD, Siegrist RL (1995) In-situ oxidation of trichloroethylene using hydrogen-peroxide. J Environ Eng-ASCE 121(9):639–644. doi:10.1061/(ASCE)0733-9372(1995)121:9(639)

    Article  CAS  Google Scholar 

  • Greer CW, Whyte LG, Niederberger TD (2010) Microbial communities in hydrocarbon-contminated temperate, tropical, alpine, and polar soils. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 2313–2328

    Chapter  Google Scholar 

  • Heiss-Blanquet S, Rochette S, Monot F (2004) Evaluation of alkane biodegradation potential of environmental samples by competitive PCR. Paper presented at the European Symposium on Environmental Biotechnology, Eseb 2004

  • Hrapovic L, Sleep BE, Major DJ, Hood ED (2005) Laboratory study of treatment of trichloroethene by chemical oxidation followed by bioremediation. Environ Sci Technol 39(8):2888–2897. doi:10.1021/es049017y

    Article  CAS  PubMed  Google Scholar 

  • ITRC (2005) Technical and regulatory guidance for in situ chemical oxidation of contaminated soil and groundwater ISCO-2. 2 edn. Interstate Technology and Regulatory Council, In Situ Chemical Oxidation Team, Washington, DC

  • Jeffrey AM, Yeh HJC, Jerina DM, Patel TR, Davey JF, Gibson DT (1975) Initial reactions in oxidation of naphthalene by Pseudomonas putida. Biochemistry 14(3):575–584. doi:10.1021/bi00674a018

    Article  CAS  PubMed  Google Scholar 

  • Jung H, Choi H (2003) Effects of in situ ozonation on structural change of soil organic matter. Environ Eng Sci 20(4):289–299

    Article  CAS  Google Scholar 

  • Jung H, Ahn Y, Choi H, Kim IS (2005) Effects of in-situ ozonation on indigenous microorganisms in diesel contaminated soil: survival and regrowth. Chemosphere 61(7):923–932. doi:10.1016/j.chemoshere.2005.03.038

    Article  CAS  PubMed  Google Scholar 

  • Kasai Y, Takahata Y, Hoaki T, Watanabe K (2005) Physiological and molecular characterization of a microbial community established in unsaturated, petroleum-contaminated soil. Environ Microbiol 7(6):806–818. doi:10.1111/j.1462-2920.2005.00754.x

    Article  CAS  PubMed  Google Scholar 

  • Kim I, Lee M (2012) Pilot scale feasibility study for in-situ chemical oxidation using H2O2 solution conjugated with biodegradation to remediate a diesel contaminated site. J Hazard Mater 241:173–181. doi:10.1016/j.jhazmat2012.09.022

    Article  PubMed  Google Scholar 

  • Kloos K, Munch JC, Schloter M (2006) A new method for the detection of alkane-monooxygenase homologous genes (alkB) in soils based on PCR-hybridization. J Microbiol Methods 66(3):486–496. doi:10.1016/j.mimet.2006.01.014

    Article  CAS  PubMed  Google Scholar 

  • Kuhad RC, Gupta R (2009) Biological remediation of petroleum contaminants. In: Singh A, Ward OP (eds) Advances in applied bioremediation, Soil biology. Springer, Berlin, pp 173–187

    Chapter  Google Scholar 

  • Kulik N, Goi A, Trapido M, Tuhkanen T (2006) Degradation of polycyclic aromatic hydrocarbons by combined chemical pre-oxidation and bioremediation in creosote contaminated soil. J Environ Manage 78(4):382–391. doi:10.1016/j.jenvman.2005.05.005

    Article  CAS  PubMed  Google Scholar 

  • Lee BT, Kim KW (2002) Ozonation of diesel fuel in unsaturated porous media. Appl Geochem 17(8):1165–1170. doi:10.1016/S0883-2927(02)00011-2

    Article  CAS  Google Scholar 

  • Liang YT, Van Nostrand JD, Wang J, Zhang X, Zhou JZ, Li GH (2009) Microarray-based functional gene analysis of soil microbial communities during ozonation and biodegradation of crude oil. Chemosphere 75(2):193–199. doi:10.1016/j.chemosphere.2008.12.007

    Article  CAS  PubMed  Google Scholar 

  • Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar BA, Lai T, Steppi S, Jobb G, Forster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, Konig A, Liss T, Lussmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer KH (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32(4):1363–1371. doi:10.1093/nar/gkh293

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maphosa F, de Vos WM, Smidt H (2010) Exploiting the ecogenomics toolbox for environmental diagnostics of organohalide-respiring bacteria. Trends Biotechnol 28(6):308–316. doi:10.1016/j.tibtech.2010.03.005

    Article  CAS  PubMed  Google Scholar 

  • Marques AV, dos Santos SCC, Casella RD, Vital RL, Sebastin GV, Seldin L (2008) Bioremediation potential of a tropical soil contaminated with a mixture of crude oil and production water. J Microbiol Biotechnol 18(12):1966–1974. doi:10.4014/jmb.0800.279

    Google Scholar 

  • Miller CM, Valentine RL, Roehl ME, Alvarez PJJ (1996) Chemical and microbiological assessment of pendimethalin-contaminated soil after treatment with Fenton's reagent. Water Res 30(11):2579–2586. doi:10.1016/S0043-1354(96)00151-0

    Article  CAS  Google Scholar 

  • Mills D, Fitzgerald K, Litchfield C, Gillevet P (2003) A comparison of DNA profiling techniques for monitoring nutrient impact on microbial community composition during bioremediation of petroleum-contaminated soils. J Microbiol Meth 54(1):57–74

    Article  CAS  Google Scholar 

  • Morgan P, Watkinson RJ (1994) Biodegradation of components of petroleum. In: Ratledge C (ed) Biochemistry of microbial degradation. Kluwer Academic Publishers, Dordrecht, pp 1–31

    Chapter  Google Scholar 

  • Muyzer G, Dewaal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes-coding for 16S ribosomal RNA. Appl Environ Microbiol 59(3):695–700

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nam K, Rodriguez W, Kukor JJ (2001) Enhanced degradation of polycyclic aromatic hydrocarbons by biodegradation combined with a modified Fenton reaction. Chemosphere 45(1):11–20. doi:10.1016/S0045-6535(01)00051-0

    Article  CAS  PubMed  Google Scholar 

  • Ndjou'ou AC, Bou-Nasr J, Cassidy D (2006) Effect of Fenton reagent dose on coexisting chemical and microbial oxidation in soil. Environ Sci Technol 40(8):2778–2783. doi:10.1021/es0525152

    Article  PubMed  Google Scholar 

  • NEN5733 (1997) Soil-determination of mineral oil content in soil and sediments with gas chromatography. Nederlands Normalisatie Instituut, Delft

  • Nubel U, Engelen B, Felske A, Snaidr J, Wieshuber A, Amann RI, Ludwig W, Backhaus H (1996) Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J Bacteriol 178(19):5636–5643

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pan LW, Siegrist RL, Crimi M (2012) Effects of in situ remediation using oxidants or surfactants on subsurface organic matter and sorption of trichloroethene. Ground Water Monit Remediat 32:96–105

    Article  CAS  Google Scholar 

  • Pansu M, Gautheyrou J (2006) Handbook of soil analysis : mineralogical, organic and inorganic methods. Springer, Berlin [etc.]

  • Powell SM, Ferguson SH, Bowman JP, Snape I (2006) Using real-time PCR to assess changes in the hydrocarbon-degrading microbial community in Antarctic soil during bioremediation. Microb Ecol 52(3):523–532. doi:10.1007/s00248-006-9131-z

    Article  CAS  PubMed  Google Scholar 

  • Powell SM, Bowman JP, Ferguson SH, Snape I (2010) The importance of soil characteristics to the structure of alkane-degrading bacterial communities on sub-Antarctic Macquarie Island. Soil Biol Biochem 42(11):2012–2021. doi:10.1016/j.soilbio.2010.07.027

    Article  CAS  Google Scholar 

  • Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig WG, Peplies J, Glockner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35(21):7188–7196. doi:10.1093/nar/gkm864

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Richardson SD, Lebron BL, Miller CT, Aitken MD (2011) Recovery of phenanthrene-degrading bacteria after simulated in situ persulfate oxidation in contaminated soil. Environ Sci Technol 45(2):719–725. doi:10.1021/es102420r

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rivas FJ (2006) Polycyclic aromatic hydrocarbons sorbed on soils: a short review of chemical oxidation based treatments. J Hazard Mater 138(2):234–251. doi:10.1016/j.jhazmat.2006.07.048

    Article  CAS  PubMed  Google Scholar 

  • Rojo F (2009) Degradation of alkanes by bacteria. Environ Microbiol 11(10):2477–2490. doi:10.1111/j.1462-2920.2009.01948.x

    Article  CAS  PubMed  Google Scholar 

  • Sahl J, Munakata-Marr J (2006) The effects of in situ chemical oxidation on microbiological processes: a review. Remediat J 16(3):57–70. doi:10.1002/rem.20091

    Article  Google Scholar 

  • Sanguinetti CJ, Neto ED, Simpson AJG (1994) Rapid silver staining and recovery of PCR products separated on polyacrylamide gels. Biotechniques 17(5):914–921

    CAS  PubMed  Google Scholar 

  • Schippers A, Bosecker K, Sproer C, Schumann P (2005) Microbacterium oleivorans sp nov and Microbacterium hydrocarbon oxydans sp nov, novel crude-oil-degrading Gram-positive bacteria. Int J Syst Evol Micr 55:655–660. doi:10.1099/ijs.0.63305-0

    Article  CAS  Google Scholar 

  • Sei K, Sugimoto Y, Mori K, Maki H, Kohno T (2003) Monitoring of alkane-degrading bacteria in a sea-water microcosm during crude oil degradation by polymerase chain reaction based on alkane-catabolic genes. Environ Microbiol 5(6):517–522

    Article  CAS  PubMed  Google Scholar 

  • Seol Y, Zhang H, Schwartz FW (2003) A review of in situ chemical oxidation and heterogeneity. Environ Eng Geosci 9(1):37–49. doi:10.2113/9.1.37

    Article  Google Scholar 

  • Sercu B, Jones ADG, Wu CH, Escobar MH, Serlin CL, Knapp TA, Andersen GL, Holden PA (2013) The influence of in situ chemical oxidation on microbial community composition in groundwater contaminated with chlorinated solvents. Microb Ecol 65(1):39–49. doi:10.1007/s00248-012-0092-0

    Article  CAS  PubMed  Google Scholar 

  • Siegrist RL, Crimi M, Simpkin TJ, Brown RA (2011) In Situ Chemical Oxidation for Groundwater Remediation, vol 3. Springer, New York

    Book  Google Scholar 

  • Singh A (2009) Biological remediation of soil: an overview of global market and available technologies. In: Singh A, Ward OP (eds) Advances in applied bioremediation, vol 17, Soil biology. Springer, Berlin, pp 1–19

    Chapter  Google Scholar 

  • Smith MR (1990) The biodegradation of aromatic hydrocarbons by bacteria. Biodegradation 1:191–206

    Article  CAS  PubMed  Google Scholar 

  • Sutton NB, Grotenhuis JTC, Langenhoff AAM, Rijnaarts HHM (2011) Efforts to improve coupled in situ chemical oxidation with bioremediation: a review of optimization strategies. J Soils Sediments 11(1):129–140. doi:10.1007/s11368-010-0272-9

    Article  CAS  Google Scholar 

  • Sutton NB, Maphosa F, Morillo JA, Abu Al-Soud W, Langenhoff AAM, Grotenhuis T, Rijnaarts HHM, Smidt H (2013a) Impact of long-term diesel contamination on soil microbial community structure. Appl Environ Microbiol 79(2):619–630. doi:10.1128/aem.02747-12

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sutton NB, van Gaans P, Langenhoff AAM, Maphosa F, Smidt H, Grotenhuis T, Rijnaarts HHM (2013b) Biodegradation of aged diesel in diverse soil matrixes: impact of environmental conditions and bioavailability on microbial remediation capacity. Biodegradation 24(4):487–498. doi:10.1007/s10532-012-9605-2

    Article  CAS  PubMed  Google Scholar 

  • Tsai TT, Kao CM, Yeh TY, Liang SH, Chien HY (2009) Remediation of fuel oil-contaminated soils by a three-stage treatment system. Environ Eng Sci 26(3):651–659. doi:10.1089/ees.2008.0008

    Article  CAS  Google Scholar 

  • Tsitonaki A, Petri B, Crimi M, Mosbaek H, Siegrist RL, Bjerg PL (2010) In situ chemical oxidation of contaminated soil and groundwater using persulfate. Review 40(1):55–91. doi:10.1080/10643380802039303

    CAS  Google Scholar 

  • Van Hamme JD, Singh A, Ward OP (2003) Recent advances in petroleum microbiology. Microbiol Mol Biol Rev 67(4):503–549

    Article  PubMed Central  PubMed  Google Scholar 

  • Vinas M, Sabate J, Espuny MJ, Solanas AM (2005) Bacterial community dynamics and polycyclic aromatic hydrocarbon degradation during bioremediation of heavily creosote-contaminated soil. Appl Environ Microbiol 71(11):7008–7018. doi:10.1128/aem.71.11.7008-7018.2005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vitolins AR, Nelson BR, Underhill SA, Thomas LMH (2003) Fenton's reagent-based in situ chemical oxidation treatment of saturated and unsaturated soils at a historic railroad site. Soil Sediment Contam 12(1):139–150

    Article  CAS  Google Scholar 

  • Watts RJ, Teel AL (2005) Chemistry of modified Fenton's reagent (catalyzed H2O2 propagations-CHP) for in situ soil and groundwater remediation. J Environ Eng-ASCE 131(4):612–622. doi:10.1061/(asce)0733-9372(2005)131:4(612)

    Article  CAS  Google Scholar 

  • Xu JL, Pancras T, Grotenhuis T (2011) Chemical oxidation of cable insulating oil contaminated soil. Chemosphere 84(2):272–277. doi:10.1016/j.chemosphere.2011.03.044

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research is funded by the European Union Consortium Upsoil, a Seventh Framework Program within Theme 6, number 226956 (www.upsoil.eu). HS and FM received support through the EcoLinc project of the Netherlands Genomics Initiative. The authors would also like to thank Janusz Krupanek, Mariusz Kalisz (Instytut Ekologii Terenow Uprzemyslowionych, Poland), and Jan Marek (Przedsiebiorstwo Oczyszczania Wodi Ziemi, Poland) for logistical support during field sampling. Wobbe Schuurmans (CBLB, The Netherlands) is acknowledged for his analytical support. Finally, the authors thank Eulalia Martinez-Pascual (University of Barcelona) for assistance with qPCR protocols.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nora B. Sutton.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 105 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sutton, N.B., Langenhoff, A.A.M., Lasso, D.H. et al. Recovery of microbial diversity and activity during bioremediation following chemical oxidation of diesel contaminated soils. Appl Microbiol Biotechnol 98, 2751–2764 (2014). https://doi.org/10.1007/s00253-013-5256-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5256-4

Keywords

Navigation