Skip to main content
Log in

Characterization of the human dynein light chain Rp3 and its use as a non-viral gene delivery vector

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Dynein light chains mediate the interaction between the cargo and the dynein motor complex during retrograde microtubule-mediated transport in eukaryotic cells. In this study, we expressed and characterized the recombinant human dynein light chain Rp3 and developed a modified variant harboring an N-terminal DNA-binding domain (Rp3-Db). Our approach aimed to explore the retrograde cell machinery based on dynein to enhance plasmid DNA (pDNA) traffic along the cytosol toward the nucleus. In the context of non-viral gene delivery, Rp3-Db is expected to simultaneously interact with DNA and dynein, thereby enabling a more rapid and efficient transport of the genetic material across the cytoplasm. We successfully purified recombinant Rp3 and obtained a low-resolution structural model using small-angle X-ray scattering. Additionally, we observed that Rp3 is a homodimer under reducing conditions and remains stable over a broad pH range. The ability of Rp3 to interact with the dynein intermediate chain in vitro was also observed, indicating that the recombinant Rp3 is correctly folded and functional. Finally, Rp3-Db was successfully expressed and purified and exhibited the ability to interact with pDNA and mediate the transfection of cultured HeLa cells. Rp3-Db was also capable of interacting in vitro with dynein intermediate chains, indicating that the addition of the N-terminal DNA-binding domain does not compromise its function. The transfection level observed for Rp3-Db is far superior than that reported for protamine and is comparable to that of the cationic lipid LipofectamineTM. This report presents an initial characterization of a non-viral delivery vector based on the dynein light chain Rp3 and demonstrates the potential use of modified human light chains as gene delivery vectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amand HL, Norden B, Fant K (2012) Functionalization with C-terminal cysteine enhances transfection efficiency of cell-penetrating peptides through dimer formation. Biochem Biophys Res Commun 418:469–474

    Article  PubMed  CAS  Google Scholar 

  • Arangoa MA, Düzgüneş N, Tros de Ilarduya C (2003) Increased receptor-mediated gene delivery to the liver by protamine-enhanced-asialofetuin-lipoplexes. Gene Ther 10(1):5–14

    Article  PubMed  CAS  Google Scholar 

  • Barbar E, Kleinman B, Imhoff D, Li M, Hays TS, Hare M (2001) Dimerization and folding of LC8, a highly conserved light chain of cytoplasmic dynein. Biochemistry 40:1596–1605

    Article  PubMed  CAS  Google Scholar 

  • Benison G, Karplus PA, Barbar E (2007) Structure and dynamics of LC8 complexes with KXTQT-motif peptides: swallow and dynein intermediate chain compete for a common site. J Mol Biol 371:457–468

    Article  PubMed  CAS  Google Scholar 

  • Bernstein HJ (2000) Recent changes to rasmol, recombining the variants. Trends Biochem Sci 25:453–455

    Article  PubMed  CAS  Google Scholar 

  • CCP4 (1994) Collaborative computational project, number 4. The CCP4 suite: programs for protein crystallography. Acta Cryst D 50:760–763

    Article  Google Scholar 

  • Chuang JZ, Milner TA, Sung CH (2001) Subunit heterogeneity of cytoplasmic dynein: differential expression of 14 kDa dynein light chains in rat hippocampus. J Neurosc 21:5501–5512

    CAS  Google Scholar 

  • Doniach S (2001) Changes in biomolecular conformation seen by small angle X-ray scattering. Chem Rev 101:1763–1778. doi:10.1021/cr990071k

    Article  PubMed  CAS  Google Scholar 

  • Douglas MW, Diefenbach RJ, Homa FL, Miranda-Saksena M, Rixon FJ, Vittone V, Byth K, Cunningham AL (2004) Herpes simplex virus type 1 capsid protein VP26 interacts with dynein light chains RP3 and Tctex1 and plays a role in retrograde cellular transport. J Biol Chem 279:28522–28530

    Article  PubMed  CAS  Google Scholar 

  • Fischer H, de Oliveira Neto M, Napolitano HB, Polikarpov I, Craievich AF (2009) Determination of the molecular weight of proteins in solution from a single small-angle X-ray scattering measurement on a relative scale. J Appl Cryst 43:101–109. doi:10.1107/S0021889809043076

    Article  CAS  Google Scholar 

  • Franke D, Svergun DI (2009) DAMMIF, a program for rapid ab-initio shape determination in small-angle scattering. J Appl Cryst 42:342–346. doi:10.1107/S0021889809000338

    Article  CAS  Google Scholar 

  • Freitas SS, Azzoni AR, Santos JL, Monteiro GA, Prazeres DMF (2007) On the stability of plasmid DNA vectors during cell culture and purification. Mol Biotech 36(2):151–158

    Article  CAS  Google Scholar 

  • Glatter O, Kratky O (1982) Small angle X-ray scattering. Academic Press, London

  • Guo X, Huang L (2012) Recent advances in non-viral vectors for gene delivery. Acc Chem Res 45:971–979

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hammersley AP, Svensson SO, Hanfland M, Fitch AN, Hausermann D (1996) Two-dimensional detector software: from real detector to idealised image or two-theta scan. High Pres Res 14:235–248. doi:10.1080/08957959608201408

    Article  Google Scholar 

  • Kellerman G, Vicentin F, Tamura E, Rocha M, Tolentino H, Barbosa A, Craievich A, Torriani I (1997) The small-angle X-ray scattering beamline of the Brazilian synchrotron light laboratory. J Appl Cryst 30:880–883. doi:10.1107/S0021889897001829

    Article  Google Scholar 

  • King SM (2000) AAA domains and organization of the dynein motor unit. J Cell Sci 113:2521–2526

    PubMed  CAS  Google Scholar 

  • King SM, Barbarese E, Dillman JF, Benashski SE, Do KT, Patel-King RS, Pfister KK (1998) Cytoplasmic dynein contains a family of differentially expressed light chains. Biochemistry 37:15033–15041

    Article  PubMed  CAS  Google Scholar 

  • Konarev PV, Petoukhov MV, Volkov VV, Svergun DI (2006) ATSAS 2.1, a program package for small-angle scattering data analysis. J Appl Cryst 39:277–286

    Article  CAS  Google Scholar 

  • Kozin MB, Svergun DI (2001) Automated matching of high- and low-resolution structural models. J Appl Cryst 34:33–41. doi:10.1107/S0021889800014126

    Article  CAS  Google Scholar 

  • Lemkine GF, Demeneix BA (2001) Polyethylenimines for in vivo gene delivery. Curr Opin Mol Ther 3:178–182

    PubMed  CAS  Google Scholar 

  • Lo KW, Kogoy JM, Rasoul BA, King SM, Pfister KK (2007) Interaction of the DYNLT (TCTEX1/RP3) light chains and the intermediate chains reveals novel intersubunit regulation during assembly of the dynein complex. J Biol Chem 282:36871–36878

    Article  PubMed  CAS  Google Scholar 

  • Lundstrom K, Boulikas T (2003) Viral and non-viral vectors in gene therapy: technology development and clinical trials. Technol Cancer Res Treat 2:471–486

    PubMed  CAS  Google Scholar 

  • Makokha M, Hare M, Li MG, Hays T, Barbar E (2002) Interactions of cytoplasmic dynein light chains Tctex-1 and LC8 with the intermediate chain IC74. Biochemistry 41:4302–4311

    Article  PubMed  CAS  Google Scholar 

  • Mintzer MA, Simanek EE (2009) Nonviral vectors for gene delivery. Chem Rev 109:259–302

    Article  PubMed  CAS  Google Scholar 

  • Morishita N, Nakagami H, Morishita R, Takeda S, Mishima F, Terazono B, Nishijima S, Kaneda Y, Tanaka N (2005) Magnetic nanoparticles with surface modification enhanced gene delivery of HVJ-E vector. Biochem Biophys Res Commun 334:1121–1126

    Article  PubMed  CAS  Google Scholar 

  • Niidome T, Huang L (2002) Gene therapy progress and prospects: nonviral vectors. Gene Ther 9:1647–1652

    Article  PubMed  CAS  Google Scholar 

  • Nurminsky DI, Nurminskaya MV, Benevolenskaya EV, Shevelyov YY, Hartl DL, Gvozdev VA (1998) Cytoplasmic dynein intermediate-chain isoforms with different targeting properties created by tissue-specific alternative splicing. Mol Cel Bio 18:6816–6825

    CAS  Google Scholar 

  • Parker AL, Newman C, Briggs S, Seymour L, Sheridan PJ (2003) Nonviral gene delivery: techniques and implications for molecular medicine. Expert Rev Mol Med 5:201–215

    Article  Google Scholar 

  • Rambo RP, Tainer JA (2011) Characterizing flexible and intrinsically unstructured biological macromolecules by SAS using the Porod-Debye law. Biopolymers 95:559–571. doi:10.1002/bip.21638

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Roy A, Kucukural A, Zhang Y (2010) I-Tasser: a unified platform for automated protein structure and function prediction. Nature Prot 5:725–738

    Article  CAS  Google Scholar 

  • Ryou SM, Kim JM, Yeom JH, Hyun S, Kim S, Han MS, Kim SW, Bae J, Rhee S, Lee K (2011) Gold nanoparticle-assisted delivery of small, highly structured RNA into the nuclei of human cells. Biochem Biophys Res Commun 416:178–183

    Article  PubMed  CAS  Google Scholar 

  • Sayle RA, Milner-White EJ (1995) RASMOL: biomolecular graphics for all. Trends Bioch Sci 20:374–376

    Article  CAS  Google Scholar 

  • Semisotnov GV, Kihara H, Kotova NV, Kimura K, Amemiya Y, Wakabayashi K, Serdyuk IN, Timchenko AA, Chiba K, Nikaido K, Ikura T, Kuwajima K (1996) Protein globularization during folding. A study by synchrotron small-angle X-ray scattering. J Mol Biol 262:559–574. doi:10.1006/jmbi.1996.0535

    Article  PubMed  CAS  Google Scholar 

  • Shindyalov IN, Bourne PE (1998) Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. Protein Eng 11:739–747

    Article  PubMed  CAS  Google Scholar 

  • Svergun DI (1992) Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J Appl Cryst 25:495–503. doi:10.1107/S0021889892001663

    Article  Google Scholar 

  • Svergun D, Barberato C, Koch MHJ (1995) CRYSOL—a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates. J Appl Cryst 28:768–773. doi:10.1107/S0021889895007047

    Article  CAS  Google Scholar 

  • Tai AW, Chuang JZ, Sung CH (1998) Localization of Tctex-1, a cytoplasmic dynein light chain, to the Golgi apparatus and evidence for dynein complex heterogeneity. J Biol Chem 273:19639–19649

    Article  PubMed  CAS  Google Scholar 

  • Tai AW, Chuang JZ, Sung CH (2001) Cytoplasmic dynein regulation by subunit heterogeneity and its role in apical transport. J Cell Biol 153:1499–1509

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Talbott M, Hare M, Nyarko A, Hays TS, Barbar E (2006) Folding is coupled to dimerization of Tctex-1 dynein light chain. Biochemistry 45:6793–6800

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tang F, Hughes JA (1998) Introduction of a disulfide bond into a cationic lipid enhances transgene expression of plasmid DNA. Biochem Biophys Res Commun 242:141–145

    Article  PubMed  CAS  Google Scholar 

  • Toledo MA, Janissen R, Favaro MT, Cotta MA, Monteiro GA, Prazeres DM, Souza AP, Azzoni AR (2012) Development of a recombinant fusion protein based on the dynein light chain LC8 for non-viral gene delivery. J Cont Rel 159:222–231

    Article  CAS  Google Scholar 

  • Tsuchiya Y, Ishii T, Okahata Y, Sato T (2006) Characterization of protamine as a transfection accelerator for gene delivery. J Bioac Comp Pol 21(6):519–537

    Article  CAS  Google Scholar 

  • Vaughan KT, Vallee RB (1995) Cytoplasmic dynein binds dynactin through a direct interaction between the intermediate chains and p150Glued. J Cell Biol 131:1507–1516

    Article  PubMed  CAS  Google Scholar 

  • Volkov VV, Svergun DI (2003) Uniqueness of ab initio shape determination in small-angle scattering. J Appl Cryst 36:860–864. doi:10.1107/S0021889803000268

    Article  CAS  Google Scholar 

  • Winn M, Dodson EJ, Ralph A (1997) Collaborative computational project, number 4: providing programs for protein crystallography. vol. 277 of Methods in enzymology. Academic Press, San Diego, pp 620–633

    Google Scholar 

  • Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, Keegan RM, Krissinel EB, Leslie AGW, McCoy A, McNicholas SJ, Murshudov GN, Pannu NS, Potterton EA, Powell HR, Read RJ, Vagin A, Wilson KS (2011) Overview of the CCP4 suite and current developments. Acta Cryst D 67:235–242. doi:10.1107/S0907444910045749

    Article  CAS  Google Scholar 

  • Wu H, Maciejewski MW, Takebe S, King SM (2005) Solution structure of the tctex1 dimer reveals a mechanism for dynein-cargo interactions. Structure 13:213–223

    Article  PubMed  CAS  Google Scholar 

  • Yeh TY, Chuang JZ, Sung CH (2005) Dynein light chain rp3 acts as a nuclear matrix-associated transcriptional modulator in a dynein-independent pathway. J Cell Sci 118:3431–3443

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinfo 9:40

    Article  CAS  Google Scholar 

  • Zhang Z, Sha X, Shen A, Wang Y, Sun Z, Gu Z, Fang X (2008) Polycation nanostructured lipid carrier, a novel nonviral vector constructed with triolein for efficient gene delivery. Biochem Biophys Res Commun 370:478–482

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Azzoni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toledo, M.A.S., Favaro, M.T.P., Alves, R.F. et al. Characterization of the human dynein light chain Rp3 and its use as a non-viral gene delivery vector. Appl Microbiol Biotechnol 98, 3591–3602 (2014). https://doi.org/10.1007/s00253-013-5239-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5239-5

Keywords

Navigation