Skip to main content

Advertisement

Log in

Effects of Clostridium butyricum and Enterococcus faecium on growth performance, lipid metabolism, and cecal microbiota of broiler chickens

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

To investigate the effects of Clostridium butyricum and Enterococcus faecium on the growth performance, lipid metabolism, and cecal microbiota of broilers, 264 one-day-old male Ross 308 broiler chicks were randomly allocated into four treatments with six replicates in a 2 × 2 factorial arrangement and fed four diets with two levels of C. butyricum (0 or 1 × 109 cfu/kg) and two levels of E. faecium (0 or 2 × 109 cfu/kg) for 42 days. There was no significant interaction between C. butyricum and E. faecium on the growth performance, lipid metabolism, and cecal microbiota of broilers. However, broilers supplemented with E. faecium had lower (P = 0.022) serum leptin level at day 21 and higher (P < 0.001) fatty acid synthase (FAS), malic enzyme (ME), and acetyl–CoA carboxylase (ACC) mRNA levels in the liver at day 42. Supplementation of C. butyricum improved (P < 0.05) the average daily feed intake and average daily gain, increased (P = 0.016) the serum insulin level at 21 days of age, enhanced (P < 0.05) the content of intramuscular fat, activities of FAS in the liver and lipoprotein lipase (LPL) in the breast muscle, mRNA expression of FAS, ME, and ACC in the liver and LPL in the breast muscle at 42 days of age, but reduced (P = 0.030) cecal Bacteroidetes relative abundance at 21 days of age. The results of this study indicate that the increased intramuscular fat content of broilers fed C. butyricum as observed may be the result of enhanced lipogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angelakis E, Raoult D (2010) The increase of Lactobacillus species in the gut flora of newborn broiler chicks and ducks is associated with weight gain. PLoS One 5:e10463. doi:10.1371/journal.pone.0010463

    Article  Google Scholar 

  • Awad WA, Ghareeb K, Abdel-Raheem S, Böhm J (2009) Effects of dietary inclusion of probiotic and synbiotic on growth performance, organ weights, and intestinal histomorphology of broiler chickens. Poult Sci 88:49–56. doi:10.3382/ps.2008-00244

    Article  CAS  Google Scholar 

  • Böhmer BM, Branner GR, Roth-Maier DA (2005) Precaecal and faecal digestibility of inulin (DP 10-12) or an inulin/Enterococcus faecium mix and effects on nutrient digestibility and microbial gut flora. J Anim Physiol Anim Nutr (Berl) 89:388–396. doi:10.1111/j.1439-0396.2005.00530.x

    Article  Google Scholar 

  • Cai Y, Song Z, Zhang X, Wang X, Jiao H, Lin H (2009) Increased de novo lipogenesis in liver contributes to the augmented fat deposition in dexamethasone exposed broiler chickens (Gallus gallus domesticus). Comp Biochem Physiol C Toxicol Pharmacol 150:164–169. doi:10.1016/j.cbpc.2009.04.005

    Article  Google Scholar 

  • Capcarova M, Weiss J, Hrncar C, Kolesarova A, Pal G (2010) Effect of Lactobacillus fermentum and Enterococcus faecium strains on internal milieu, antioxidant status and body weight of broiler chickens. J Anim Physiol Anim Nutr (Berl) 94:e215–e224. doi:10.1111/j.1439-0396.2010.01010.x

    Article  CAS  Google Scholar 

  • Chen XL, Wang JK, Wu YM, Liu JX (2008) Effects of chemical treatments of rice straw on rumen fermentation characteristics, fibrolytic enzyme activities and populations of liquid- and solid- associated ruminal microbes in vitro. Anim Feed Sci Technol 141:1–14. doi:10.1016/j.anifeedsci.2007.04.006

    Article  CAS  Google Scholar 

  • Chilliard Y (1993) Dietary fat and adipose tissue metabolism in ruminants, pigs and rodents: a review. J Dairy Sci 76:3897–3931. doi:10.3168/jds.S0022-0302(93)77730-9

    Article  CAS  Google Scholar 

  • Chung CS, Meserole VK, Etherton TD (1983) Temporal nature of insulin binding and insulin-stimulated glucose metabolism in isolated swine adipocytes. J Anim Sci 56:58–63

    CAS  Google Scholar 

  • Corrigan A, Horgan K, Clipson N, Murphy RA (2011) Effect of dietary supplementation with a Saccharomyces cerevisiae mannan oligosaccharide on the bacterial community structure of broiler cecal contents. Appl Environ Microbiol 77:6653–6662. doi:10.1128/AEM.05028-11

    Article  CAS  Google Scholar 

  • Druyan S, Cahaner A, Ashwell CM (2007) The expression patterns of hypoxia-inducing factor subunit α-1, heme oxygenase, hypoxia upregulated protein 1, and cardiac troponin T during development of the chicken heart. Poult Sci 86:2384–2389. doi:10.3382/ps.2007-00152

    Article  CAS  Google Scholar 

  • Dunshea FR, Harris DM, Bauman DE, Boyd RD, Bell AW (1992) Effect of porcine somatotropin on in vivo glucose kinetics and lipogenesis in growing pigs. J Anim Sci 70:141–151

    CAS  Google Scholar 

  • Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA (2005) Diversity of the human intestinal microbial flora. Science 308:1635–1638. doi:10.1126/science.1110591

    Article  Google Scholar 

  • Etherton TD (2000) The biology of somatotropin in adipose tissue growth and nutrient partitioning. J Nutr 130:2623–2625

    CAS  Google Scholar 

  • Fierer N, Jackson JA, Vilgalys R, Jackson RB (2005) Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Appl Environ Microbiol 71:4117–4120. doi:10.1128/AEM.71.7.4117-4120.2005

    Article  CAS  Google Scholar 

  • Goldberg IJ (1996) Lipoprotein lipase and lipolysis: central roles in lipoprotein metabolism and atherogenesis. J Lipid Res 37:693–707

    CAS  Google Scholar 

  • Greiner T, Bäckhed F (2011) Effects of the gut microbiota on obesity and glucose homeostasis. Trends Endocrinol Metab 22:117–123. doi:10.1016/j.tem.2011.01.002

    Article  CAS  Google Scholar 

  • Guo X, Xia X, Tang R, Zhou J, Zhao H, Wang K (2008a) Development of a real-time PCR method for Firmicutes and Bacteroidetes in faeces and its application to quantify intestinal population of obese and lean pigs. Lett Appl Microbiol 47:367–373. doi:10.1111/j.1472-765X.2008.02408.x

    Article  CAS  Google Scholar 

  • Guo X, Xia X, Tang R, Wang K (2008b) Real-time PCR quantification of the predominant bacterial divisions in the distal gut of Meishan and Landrace pigs. Anaerobe 14:224–228. doi:10.1016/j.anaerobe.2008.04.001

    Article  CAS  Google Scholar 

  • Hermier D (1997) Lipoprotein metabolism and fattening in poultry. J Nutr 127:805S–808S

    CAS  Google Scholar 

  • Huang J, Yang D, Gao S, Wang T (2008) Effects of soy-lecithin on lipid metabolism and hepatic expression of lipogenic genes in broiler chickens. Livest Sci 118:53–60. doi:10.1016/j.livsci.2008.01.014

    Article  Google Scholar 

  • Huang Q, Xu Z, Han X, Li W (2006) Changes in hormones, growth factor and lipid metabolism in finishing pigs fed betaine. Livest Sci 105:78–85. doi:10.1016/j.livsci.2006.04.031

    Article  Google Scholar 

  • Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A 102:11070–11075. doi:10.1073/pnas.0504978102

    Article  CAS  Google Scholar 

  • Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444:1022–1023. doi:10.1038/4441022a

    Article  CAS  Google Scholar 

  • Lin SY, Hung ATY, Lu JJ (2011) Effects of supplement with different level of Bacillus coagulans as probiotics on growth performance and intestinal microflora populations of broiler chickens. J Anim Vet Adv 10:111–114. doi:10.3923/javaa.2011.111.114

    Article  CAS  Google Scholar 

  • Liu ZH, Yang FY, Kong LJ, Lai CH, Piao XS, Gu YH, Ou XQ (2007) Effects of dietary energy density on growth, carcass quality and mRNA expression of fatty acid synthase and hormone-sensitive lipase in finishing pigs. Asian-Australas J Anim Sci 20:1587–1593

    CAS  Google Scholar 

  • Louveau I, Gondret F (2004) Regulation of development and metabolism of adipose tissue by growth hormone and the insulin-like growth factor system. Domest Anim Endocrinol 27:241–255. doi:10.1016/j.domaniend.2004.06.004

    Article  CAS  Google Scholar 

  • Lu J, Idris U, Harmon B, Hofacre C, Maurer JJ, Lee MD (2003) Diversity and succession of the intestinal bacterial community of the maturing broiler chicken. Appl Environ Microbiol 69:6816–6824. doi:10.1128/AEM.69.11.6816-6824.2003

    Article  CAS  Google Scholar 

  • Ma HT, Tang X, Tian CY, Zou SX, Huang GQ, Chen WH (2008) Effects of dehydroepiandrosterone on growth performance, lipid metabolic hormones and parameters in broilers. Vet Med (Praha) 53:543–549

    CAS  Google Scholar 

  • Mao H, Wang J, Zhou Y, Liu J (2010) Effects of addition of tea saponins and soybean oil on methane production, fermentation and microbial population in the rumen of growing lambs. Livest Sci 129:56–62. doi:10.1016/j.livsci.2009.12.011

    Article  Google Scholar 

  • Mersmann HJ, MacNeil MD (1985) Relationship of plasma lipid concentrations to fat deposition in pigs. J Anim Sci 61:122–128

    CAS  Google Scholar 

  • Miao Z, Wang L, Xu Z, Huang J, Wang Y (2008) Developmental patterns in hormone and lipid metabolism of growing Jinhua and Landrace gilts. Can J Anim Sci 88:601–607. doi:10.4141/CJAS08037

    Article  CAS  Google Scholar 

  • Mossab A, Lessire M, Guillaumin S, Kouba M, Mourot J, Peiniau P, Hermier D (2002) Effect of dietary fats on hepatic lipid metabolism in the growing turkey. Comp Biochem Physiol B Biochem Mol Biol 132:473–483. doi:10.1016/S1096-4959(02)00059-3

    Article  Google Scholar 

  • Mountzouris KC, Tsirtsikos P, Kalamara E, Nitsch S, Schatzmayr G, Fegeros K (2007) Evaluation of the efficacy of a probiotic containing Lactobacillus, Bifidobacterium, Enterococcus, and Pediococcus strains in promoting broiler performance and modulating cecal microflora composition and metabolic activities. Poult Sci 86:309–317

    CAS  Google Scholar 

  • Mountzouris KC, Tsitrsikos P, Palamidi I, Arvaniti A, Mohnl M, Schatzmayr G, Fegeros K (2010) Effects of probiotic inclusion levels in broiler nutrition on growth performance, nutrient digestibility, plasma immunoglobulins, and cecal microflora composition. Poult Sci 89:58–67. doi:10.3382/ps.2009-00308

    Article  CAS  Google Scholar 

  • Murayama T, Mita N, Tanaka M, Kitajo T, Asano T, Mizuochi K, Kaneko K (1995) Effects of orally administered Clostridium butyricum MIYAIRI 588 on mucosal immunity in mice. Vet Immunol Immunopathol 48:333–342. doi:10.1016/0165-2427(95)05437-B

    Article  CAS  Google Scholar 

  • Nakanishi S, Tanaka M (2010) Sequence analysis of a bacteriocinogenic plasmid of Clostridium butyricum and expression of the bacteriocin gene in Escherichia coli. Anaerobe 16:253–257. doi:10.1016/j.anaerobe.2009.10.002

    Article  CAS  Google Scholar 

  • National Research Council (1994) Nutrient requirements of poultry, 9th rev. edn. Natl. Acad., Washington, DC

  • Numa S, Nakanishi S, Hashimoto T, Iritani N, Okazaki T (1970) Role of acetyl coenzyme A carboxylase in the control of fatty acid synthesis. Vitam Horm 28:213–243. doi:10.1016/S0083-6729(08)60895-X

    Article  CAS  Google Scholar 

  • O'Hea EK, Leveille GA (1968) Lipogenesis in isolated adipose tissue of the domestic chick (Gallus domesticus). Comp Biochem Physiol 26:111–120. doi:10.1016/0010-406X(68)90317-4

    Article  Google Scholar 

  • Patterson JA, Burkholder KM (2003) Application of prebiotics and probiotics in poultry production. Poult Sci 82:627–631

    CAS  Google Scholar 

  • Pucci E, Chiovato L, Pinchera A (2000) Thyroid and lipid metabolism. Int J Obes Relat Metab Disord 24:S109–S112. doi:10.1038/sj.ijo.0801292

    Article  CAS  Google Scholar 

  • Ramsay TG (2004) Porcine leptin alters isolated adipocyte glucose and fatty acid metabolism. Domest Anim Endocrinol 26:11–21. doi:10.1016/j.domaniend.2003.07.001

    Article  CAS  Google Scholar 

  • Ramsay TG, Yan X, Morrison C (1998) The obesity gene in swine: sequence and expression of porcine leptin. J Anim Sci 76:484–490

    CAS  Google Scholar 

  • Samli HE, Senkoylu N, Koc F, Kanter M, Agma A (2007) Effects of Enterococcus faecium and dried whey on broiler performance, gut histomorphology and intestinal microbiota. Arch Anim Nutr 61:42–49. doi:10.1080/17450390601106655

    Article  Google Scholar 

  • Samli HE, Dezcan S, Koc F, Ozduven ML, Okur AA, Senkoylu N (2010) Effect of Enterococcus faecium supplementation and floor type on performance, morphology of erythrocytes and intestinal microbiota in broiler chickens. Br Poult Sci 51:564–568. doi:10.1080/00071668.2010.507241

    Article  CAS  Google Scholar 

  • Sanz M, Lopez-Bote CJ, Menoyo D, Bautista JM (2000) Abdominal fat deposition and fatty acid synthesis are lower and β-oxidation is higher in broiler chickens fed diets containing unsaturated rather than saturated fat. J Nutr 130:3034–3037

    CAS  Google Scholar 

  • Sheridan MA, Kao Y (1998) Regulation of metamorphosis-associated changes in the lipid metabolism of selected vertebrates. Amer Zool 38:350–368. doi:10.1093/icb/38.2.350

    CAS  Google Scholar 

  • Sun JM, Richards MP, Rosebrough RW, Ashwell CM, McMurtry JP, Coon CN (2006) The relationship of body composition, feed intake, and metabolic hormones for broiler breeder females. Poult Sci 85:1173–1184

    CAS  Google Scholar 

  • Toussant MJ, Wilson MD, Clarke SD (1981) Coordinate suppression of liver acetyl–CoA carboxylase and fatty acid synthetase by polyunsaturated fat. J Nutr 111:146–153

    CAS  Google Scholar 

  • Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031. doi:10.1038/nature05414

    Article  Google Scholar 

  • Voshol PJ, Jong MC, Dahlmans VE, Kratky D, Levak-Frank S, Zechner R, Romijn JA, Havekes LM (2001) In muscle-specific lipoprotein lipase-overexpressing mice, muscle triglyceride content is increased without inhibition of insulin-stimulated whole-body and muscle-specific glucose uptake. Diabetes 50:2585–2590. doi:10.2337/diabetes.50.11.2585

    Article  CAS  Google Scholar 

  • Wang X, Lin H, Song Z, Jiao H (2010) Dexamethasone facilitates lipid accumulation and mild feed restriction improves fatty acids oxidation in skeletal muscle of broiler chicks (Gallus gallus domesticus). Comp Biochem Physiol C Toxicol Pharmacol 151:447–454. doi:10.1016/j.cbpc.2010.01.010

    Article  Google Scholar 

  • Wise EM, Ball EG (1964) Malic enzyme and lipogenesis. Proc Natl Acad Sci U S A 52:1255–1263. doi:10.1073/pnas.52.5.1255

    Article  CAS  Google Scholar 

  • Yang CM, Cao GT, Ferket PR, Liu TT, Zhou L, Zhang L, Xiao YP, Chen AG (2012) Effects of probiotic, Clostridium butyricum, on growth performance, immune function, and cecal microflora in broiler chickens. Poult Sci 91:2121–2129. doi:10.3382/ps.2011-02131

    Article  CAS  Google Scholar 

  • Yang X, Zhang B, Guo Y, Jiao P, Long F (2010) Effects of dietary lipids and Clostridium butyricum on fat deposition and meat quality of broiler chickens. Poult Sci 89:254–260. doi:10.3382/ps.2009-00234

    Article  CAS  Google Scholar 

  • Young JW, Shrago E, Lardy HA (1964) Metabolic control of enzymes involved in lipogenesis and gluconeogenesis. Biochemistry 3:1687–1692. doi:10.1021/bi00899a015

    Article  CAS  Google Scholar 

  • Zhang B, Yang X, Guo Y, Long F (2011a) Effects of dietary lipids and Clostridium butyricum on the performance and the digestive tract of broiler chickens. Arch Anim Nutr 65:329–339. doi:10.1080/1745039X.2011.568274

    Article  CAS  Google Scholar 

  • Zhang B, Yang X, Guo Y, Long F (2011b) Effects of dietary lipids and Clostridium butyricum on serum lipids and lipid-related gene expression in broiler chickens. Animal 5:1909–1915. doi:10.1017/S1751731111001066

    Article  CAS  Google Scholar 

  • Zhu XY, Zhong T, Pandya Y, Joerger RD (2002) 16S rRNA-based analysis of microbiota from the cecum of broiler chickens. Appl Environ Microbiol 68:124–137. doi:10.1128/AEM.68.1.124-137.2002

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Chinese Universities Scientific Fund and the Yangtz River Scholarship and Innovation Research Team Development Program (Project No. IRT0945).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuming Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, X., Guo, Y., Guo, S. et al. Effects of Clostridium butyricum and Enterococcus faecium on growth performance, lipid metabolism, and cecal microbiota of broiler chickens. Appl Microbiol Biotechnol 97, 6477–6488 (2013). https://doi.org/10.1007/s00253-013-4970-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-4970-2

Keywords

Navigation