Skip to main content
Log in

Growth and characterization of Escherichia coli DH5α biofilm on concrete surfaces as a protective layer against microbiologically influenced concrete deterioration (MICD)

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Biofilms of selected bacteria strains were previously used on metal coupons as a protective layer against microbiologically influenced corrosion of metals. Unlike metal surfaces, concrete surfaces present a hostile environment for growing a protective biofilm. The main objective of this research was to investigate whether a beneficial biofilm can be successfully grown on mortar surfaces. Escherichia coli DH5α biofilm was grown on mortar surfaces for 8 days, and the structure and characteristics of the biofilm were studied using advanced microscopy techniques such as scanning electron microscopy and confocal laser scanning microscopy in combination with fluorescence in situ hybridization, live/dead, extracellular polymer staining, ATP analysis, and membrane filtration. A biofilm layer with a varying thickness of 20–40 μm was observed on the mortar surface. The distribution of live and dead bacteria and extracellular polymers varied with depth. The density of the live population near the mortar surface was the lowest. The bacteria reached their highest density at three fourths of the biofilm depth and then decreased again near the biofilm–liquid interface. Overall, the results indicated a healthy biofilm growth in the chosen growth period of 8 days, and it is expected that longer growth periods would lead to formation of a more resistant biofilm with more coverage of mortar surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Amann RI (1995) In-situ identification of micro-organisms by whole cell hybridization with rRNA-targeted nucleic acid probes. Molecular microbial ecology manual. Kluwer Academic Publishers, Netherlands, pp 1–15

    Google Scholar 

  • APHA, Eaton AD, Franson MAH (2005) Standard methods for the examination of water & wastewater. American Public Health Association

  • Beyenal H, Lewandowski Z (2002) Internal and external mass transfer in biofilms grown at various flow velocities. Biotechnol Prog 18(1):55–61. doi:10.1021/bp010129s

    Article  CAS  Google Scholar 

  • De Belie N, Monteny J, Beeldens A, Vincke E, Van Gemert D, Verstraete W (2004) Experimental research and prediction of the effect of chemical and biogenic sulfuric acid on different types of commercially produced concrete sewer pipes. Cem Concr Res 34(12):2223–2236. doi:10.1016/j.cemconres.2004.02.015

    Article  Google Scholar 

  • Fratesi SE, Lynch FL, Kirkland BL, Brown LR (2004) Effects of SEM preparation techniques on the appearance of bacteria and biofilms in the carter sandstone. J Sediment Res 74(6):858–867. doi:10.1306/042604740858

    Article  Google Scholar 

  • Islander RL, Mansfeld F, Postyn A, Shih H (1991) Microbial ecology of crown corrosion in sewers. J Environ Eng ASCE 117(6):751–770. doi:10.1061/(ASCE)0733-9372

    Article  CAS  Google Scholar 

  • Jayaraman A, Earthman JC, Wood TK (1997a) Corrosion inhibition by aerobic biofilms on SAE 1018 steel. Appl Microbiol Biotechnol 47(1):62–68. doi:10.1007/s002530050889

    Article  CAS  Google Scholar 

  • Jayaraman A, Cheng ET, Earthman JC, Wood TK (1997b) Axenic aerobic biofilms inhibit corrosion of SAE 1018 steel through oxygen depletion. Appl Microbiol Biotechnol 48(1):11–17. doi:10.1007/s002530050889

    Article  CAS  Google Scholar 

  • Jayaraman A, Sun AK, Wood TK (1998) Characterization of axenic Pseudomonas fragi and Escherichia coli biofilms that inhibit corrosion of SAE 1018 steel. J Appl Microbiol 84(4):485–492. doi:10.1046/j.1365-2672.1998.00359.x

    Article  CAS  Google Scholar 

  • Mori T, Nonaka T, Tazaki K, Koga M, Hikosaka Y, Noda S (1992) Interactions of nutrients, moisture and pH on microbial corrosion of concrete sewer pipes. Water Res 26(1):29–37. doi:10.1016/0043-1354(92)90107-F

    Article  CAS  Google Scholar 

  • Movassagh Ghazani MH, Karami AR, Dolgharisharaf J (2009) Biofilm formation of Escherichia coli O111 on cement surfaces. Res J Biol Sci 4:113–115. doi:rjbsci.2009.113.115

    Google Scholar 

  • Murga R, Stewart PS, Daly D (1995) Quantitative analysis of biofilm thickness variability. Biotechnol Bioeng 45(6):503–510. doi:10.1002/bit.260450607

    Article  CAS  Google Scholar 

  • Nica D, Davis JL, Kirby L, Zuo G, Roberts DJ (2000) Isolation and characterization of microorganisms involved in the biodeterioration of concrete in sewers. Int Biodeterior Biodegrad 46(1):61–68. doi:10.1016/S0964-8305(00)00064-0

    Article  CAS  Google Scholar 

  • Örnek D, Jayaraman A, Syrett BC, Hsu CH, Mansfeld FB, Wood TK (2002) Pitting corrosion inhibition of aluminum 2024 by Bacillus biofilms secreting polyaspartate or γ-polyglutamate. Appl Microbiol Biotechnol 58(5):651–657. doi:10.1007/s00253-002-0942-7

    Article  Google Scholar 

  • Skalny J, Marchand J, Odler I (2002) Sulfate attack on concrete. Taylor & Francis, London, ISBN-419-24550-2,2002

    Google Scholar 

  • Stewart PS, Murga R, Srinivasan R, de Beer D (1995) Biofilm structural heterogeneity visualized by three microscopic methods. Water Res 29(8):2006–2009. doi:10.1016/0043-1354(94)00339-9

    Article  CAS  Google Scholar 

  • Todar, K (2008–2012) Online textbook of bacteriology. At http://www.textbookofbacteriology.net/. Accessed 19 April 2012

  • Zarda B, Hahn D, Chatzinotas A, Schönhuber W, Neef A, Amann RI, Zeyer J (1997) Analysis of bacterial community structure in bulk soil by in-situ hybridization. Arch Microbiol 168(3):185–192. doi:10.1007/s002030050486

    Article  CAS  Google Scholar 

  • Zuo R (2007) Biofilms: strategies for metal corrosion inhibition employing microorganisms. Appl Microbiol Biotechnol 76(6):1245–1253. doi:10.1007/s00253-007-1130-6

    Article  CAS  Google Scholar 

  • Zuo R, Örnek D, Syrett BC, Green RM, Hsu CH, Mansfeld FB, Wood TK (2004) Inhibiting mild steel corrosion from sulfate-reducing bacteria using antimicrobial-producing biofilms in Three-Mile-Island process water. Appl Microbiol Biotechnol 64(2):275–283. doi:10.1007/s00253-003-1403-7

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the funding received from the Natural Sciences and Engineering Research Council of Canada (NSERC) to support this research project. The authors also thank Prof. Thomas K. Wood from the Texas A&M University for providing the E. coli DH5α strain used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Banu Ormeci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soleimani, S., Ormeci, B. & Isgor, O.B. Growth and characterization of Escherichia coli DH5α biofilm on concrete surfaces as a protective layer against microbiologically influenced concrete deterioration (MICD). Appl Microbiol Biotechnol 97, 1093–1102 (2013). https://doi.org/10.1007/s00253-012-4379-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4379-3

Keywords

Navigation