Skip to main content
Log in

Effects of membrane-bound glucose dehydrogenase overproduction on the respiratory chain of Gluconobacter oxydans

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The acetic acid bacterium Gluconobacter oxydans incompletely oxidizes carbon sources as a natural part of its metabolism, and this feature has been exploited for many biotechnological applications. The most important enzymes used to harness the biocatalytic oxidative capacity of G. oxydans are the pyrroloquinoline quinone (PQQ)-dependent dehydrogenases. The membrane-bound PQQ-dependent glucose dehydrogenase (mGDH), encoded by gox0265, was used as model protein for homologous membrane protein production using the previously described Gluconobacter expression vector pBBR1p452. The mgdh gene had ninefold higher expression in the overproduction strain compared to the parental strain. Furthermore, membranes from the overexpression strain had a five- and threefold increase of mGDH activity and oxygen consumption rates, respectively. Oxygen consumption rate of the membrane fraction could not be increased by the addition of a substrate combination of glucose and ethanol in the overproduction strain, indicating that the terminal quinol oxidases of the respiratory chain were rate limiting. In contrast, addition of glucose and ethanol to membranes of the control strain increased oxygen consumption rates approaching the observed rates with G. oxydans overproducing mGDH. The higher glucose oxidation rates of the mGDH overproduction strain corresponded to a 70 % increase of the gluconate production rate compared to the control strain. The high rate of glucose oxidation may be useful in the industrial production of gluconates and ketogluconates, or as whole-cell biosensors. Furthermore, mGDH was purified to homogeneity by one-step strep-tactin affinity chromatography and characterized. To our knowledge, this is the first report of a membrane integral quinoprotein being purified by affinity chromatography and serves as a proof-of-principle for using G. oxydans as a host for membrane protein expression and purification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ackrell BA, Jones CW (1971) The respiratory system of Azotobacter vinelandii. 2. Oxygen effects. Eur J Biochem 20(1):29–35

    Article  CAS  Google Scholar 

  • Adachi O, Moonmangmee D, Shinagawa E, Toyama H, Yamada M, Matsushita K (2003) New quinoproteins in oxidative fermentation. Biochim Biophys Acta 1647(1–2):10–17

    CAS  Google Scholar 

  • Ameyama M, Shinagawa E, Matsushita K, Adachi O (1981) D-glucose dehydrogenase of Gluconobacter suboxydans: solubilization, purification and characterization. Agric Biol Chem 45:851–861

    Article  CAS  Google Scholar 

  • Ameyama M, Nonobe M, Shinagawa E, Matsushita K, Takimoto K, Adachi O (1986) Purification and characterization of quinoprotein apo-D-glucose dehydrogenase from Escherichia coli. Agric Biol Chem 50:49–57

    Article  CAS  Google Scholar 

  • Armstrong JM (1964) The molar extinction coefficient of 2,6-dichlorophenol. Biochim Biophys Acta 86:194–197

    Article  CAS  Google Scholar 

  • Ausubel F (2002) Preparation and analysis of genomic DNA from bacteria. In: Ausubel FM, Kingston RE, Moore DD, Seidman JG, Struhl K (eds) Current protocols in molecular biology, vol 5. Wiley, New York, pp 2–11

    Google Scholar 

  • Blum H, Beier H, Gross HJ (1987) Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8:93–99

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Buchert J, Viikari L (1988) Oxidative D-xylose metabolism of Gluconobacter oxydans. Appl Microbiol Biotechnol 29:375–379

    Article  CAS  Google Scholar 

  • Cleton-Jansen AM, Dekker S, van de Putte P, Goosen N (1991) A single amino acid substitution changes the substrate specificity of quinoprotein glucose dehydrogenase in Gluconobacter oxydans. Mol Gen Genet 229(2):206–212

    Article  CAS  Google Scholar 

  • Cozier GE, Salleh RA, Anthony C (1999) Characterization of the membrane quinoprotein glucose dehydrogenase from Escherichia coli and characterization of a site-directed mutant in which histidine-262 has been changed to tyrosine. Biochem J 340:639–647

    Article  CAS  Google Scholar 

  • D’Costa EJ, Higgins IJ, Turner AP (1986) Quinoprotein glucose dehydrogenase and its application in an amperometric glucose sensor. Biosensors 2(2):71–87

    Article  Google Scholar 

  • De Ley J, Gillis M, Swings J (1984) The genus Gluconobacter. In: Krieg NR, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 1. Williams and Wilkins, Baltimore, pp 267–278

    Google Scholar 

  • Deppenmeier U, Ehrenreich A (2008) Physiology of acetic acid bacteria in light of the genome sequence of Gluconobacter oxydans. J Mol Microbiol Biotechnol 16:69–80

    Article  Google Scholar 

  • Deppenmeier U, Hoffmeister M, Prust C (2002) Biochemistry and biotechnological applications of Gluconobacter strains. Appl Microbiol Biotechnol 59:1513–1533

    CAS  Google Scholar 

  • Dewanti AR, Duine JA (1998) Reconstitution of membrane-integrated quinoprotein glucose dehydrogenase apoenzyme with PQQ and the holoenzyme's mechanism of action. Biochemistry 37(19):6810–6818

    Article  CAS  Google Scholar 

  • Dvorkovita V, Hawley TG (1952) Washing composition. US Patent 2:584,017

    Google Scholar 

  • Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580

    Article  CAS  Google Scholar 

  • Hanke T, Richhardt J, Polen T, Sahm H, Bringer S, Bott M (2012) Influence of oxygen limitation, absence of the cytochrome bc(1) complex and low pH on global gene expression in Gluconobacter oxydans 621H using DNA microarray technology. J Biotechnol 157:359–372

    Article  CAS  Google Scholar 

  • Hoffmeister M (2006) Investigations on the physiology of the acetic acid bacterium Gluconobacter oxydans 621H. PhD thesis, electronic Dissertation of the University of Goettingen (https://opac.sub.uni-goettingen.de/DB=1/FKT=1016/FRM=Hoffmeister%2BMarc/IMPLAND=Y/LNG=DU/LRSET=1/SET=1/SID=32c29be9-1/SRT=YOP/TTL=1/SHW?FRST=1)

  • Hölscher T, Görisch H (2006) Knockout and overexpression of pyrroloquinoline quinone biosynthetic genes in Gluconobacter oxydans 621H. J Bacteriol 188(21):7668–7676

    Article  Google Scholar 

  • Igarashi S, Okuda J, Ikebukuro K, Sode K (2004) Molecular engineering of PQQGDH and its applications. Arch Biochem Biophys 1(1):52–63

    Article  Google Scholar 

  • Kallnik V, Meyer M, Deppenmeier U, Schweiger P (2010) Construction of expression vectors for protein production in Gluconobacter oxydans. J Biotechnol 145:260–265

    Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  • Matsushita K, Ameyama M (1982) D-Glucose dehydrogenase from Pseudomonas fluorescens, membrane-bound. Methods Enzymol 89:149–154

    Article  CAS  Google Scholar 

  • Matsushita K, Ohno Y, Shinagawa E, Adachi O, Ameyama M (1980) Membrane-bound D-glucose dehydrogenase from Pseudomonas sp.: solubilization, purification and characterization. Agric Biol Chem 44(7):1505–1512

    Article  CAS  Google Scholar 

  • Matsushita K, Nonobe M, Shinagawa E, Adachi O, Ameyama M (1987) Reconstitution of pyrroloquinoline quinone-dependent D-glucose oxidase respiratory chain of Escherichia coli with cytochrome o oxidase. J Bacteriol 169(1):205–209

    CAS  Google Scholar 

  • Matsushita K, Shinagawa E, Adachi O, Ameyama M (1989a) Quinoprotein D-glucose dehydrogenase in Acinetobacter calcoaceticus LMD 97.41: purification and characterization of the membrane-bound enzyme distinct from the soluble enzyme. Antonie van Leeuwenhoek 56:63–72

    Article  CAS  Google Scholar 

  • Matsushita K, Shinagawa E, Adachi O, Ameyama M (1989b) Reactivity with ubiquinone of quinoprotein D-glucose dehydrogenase from Gluconobacter suboxydans. J Biochem 105:633–637

    CAS  Google Scholar 

  • Matsushita K, Toyama H, Adachi O (1994) Respiratory chains and bioenergetics of acetic acid bacteria. Adv Microb Physiol 36:247–301

    Article  CAS  Google Scholar 

  • Mattey M (1992) The production of organic acids. Crit Rev Biotechnol 12(1/2):87–132

    Article  CAS  Google Scholar 

  • Merfort M, Herrmann U, Ha SW, Elfari M, Bringer-Meyer S, Görisch H, Sahm H (2006) Modification of the membrane-bound glucose oxidation system in Gluconobacter oxydans significantly increases gluconate and 5-keto-D-gluconic acid accumulation. Biotechnol J 1:556–63

    Article  CAS  Google Scholar 

  • Miller JV, David EA, Lazarus RA (1987) Purification and characterization of 2, 5-diketo-D-gluconate reductase from Corynebacterium sp. J Biol Chem 262:9016–9020

    CAS  Google Scholar 

  • Mogi T, Ano Y, Nakatsuka T, Toyama H, Muroi A, Miyoshi H, Migita CT, Ui H, Shiomi K, Ōmura S, Kita K, Matsushita K (2009) Biochemical and spectroscopic properties of cyanide-insensitive quinol oxidase from Gluconobacter oxydans. J Biochem 146(2):263–271

    Article  CAS  Google Scholar 

  • Mostafa HE, Heller KJ, Geis A (2002) Cloning of Escherichia coli lacZ and lacY genes and their expression in Gluconobacter oxydans and Acetobacter liquefaciens. Appl Environ Microbiol 68:2619–2623

    Article  CAS  Google Scholar 

  • Olijve W, Kok JJ (1979) Analysis of growth of Gluconobacter oxydans in glucose-containing media. Arch Microbiol 121:283–290

    Article  CAS  Google Scholar 

  • Park YM, Choi ES, Rhee SK (1994) Effect of toluene-permeabilization on oxidation of D-sorbitol to L-sorbose by Gluconobacter suboxydans cells immobilized in calcium alginate. Biotechnol Lett 16:345–348

    CAS  Google Scholar 

  • Prescott FJ, Shaw JK, Bilello P, Cragwall GO (1953) Gluconic acid and its derivatives. Ind Eng Chem 45:338–342

    Article  CAS  Google Scholar 

  • Pronk JT, Levering PR, Olijve W, Van Dijken JP (1989) Role of NADP dependent and quinoprotein glucose dehydrogenase in gluconic acid production by Gluconobacter oxydans. Enzyme Microb Technol 11:160–164

    Article  CAS  Google Scholar 

  • Prust C, Hoffmeister M, Liesegang H, Wiezer A, Fricke WF, Ehrenreich A, Gottschalk G, Deppenmeier U (2005) Complete genome sequence of the acetic acid bacterium Gluconobacter oxydans. Nat Biotechnol 23:195–200

    Article  CAS  Google Scholar 

  • Rabenhorst J, Gatfield I, Hilmer JM (2001) Natural, aliphatic and thiocarboxylic acids obtainable by fermentation and a microorganism therefore. Patent EP1078990

  • Reichstein T, Grüssner A (1934) Eine ergiebige Synthese der 1-Ascorbinsäure (C-Vitamin). Helv Chim Acta 17:311–328

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Sawyer DT (1964) Metal-gluconate complexes. Chem Rev 64(6):633–643

    Article  CAS  Google Scholar 

  • Schedel M (2000) Regioselective oxidation of aminosorbitol with Gluconobacter oxydans, key reaction in the industrial 1-deoxynojirimycin synthesis. In: Kelly DR (ed) Biotechnology, vol 8b. Weinheim, Wiley-VCH, pp 295–308

    Chapter  Google Scholar 

  • Schmidt K, Jensen SL, Schlegel HG (1963) Die Carotinoide der Thiorhodaceae. I. Okenon als Hauptcarotinoid von Chromatium okenii Perty. Arch Mikrobiol 46:117–126

    Article  CAS  Google Scholar 

  • Schweiger P, Gross H, Deppenmeier U (2010) Characterization of two aldo-keto reductases from Gluconobacter oxydans 621H capable of regio- and stereoselective alpha-ketocarbonyl reduction. Appl Microbiol Biotechnol 87(4):1415–1426

    Article  CAS  Google Scholar 

  • Sievers M, Swings J (2005) Family II Acetobacteriaceae. In: Garrity G, Brenner DJ, Krieg NR, Staley JT (eds) Bergeys manual of systematic bacteriology, vol 2c. Springer, New York, pp 41–95

    Google Scholar 

  • Towbin H, Staehhelin T, Gordan J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Nati Acad Sci USA 76:4350–4354

    Article  CAS  Google Scholar 

  • Yamada M, Inbe H, Tanaka M, Sumi K, Matsushita K, Adachi O (1998) Mutant isolation of the Escherichia coli quinoprotein glucose dehydrogenase and analysis of crucial residues Asp-730 and His-775 for its function. J Biol Chem 273(34):22021–22027

    Article  CAS  Google Scholar 

  • Ye L, Hammerle M, Olsthoorn AJJ, Schumann W, Schmidt HL, Duine JA, Heller A (1993) High current density ‘wired’ quinoprotein glucose dehydrogenase electrode. Anal Chem 65:238–241

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by funds from Bundesministerium für Bildung und Forschung (BMBF, project no. 0315632A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Deppenmeier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyer, M., Schweiger, P. & Deppenmeier, U. Effects of membrane-bound glucose dehydrogenase overproduction on the respiratory chain of Gluconobacter oxydans . Appl Microbiol Biotechnol 97, 3457–3466 (2013). https://doi.org/10.1007/s00253-012-4265-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4265-z

Keywords

Navigation