Skip to main content
Log in

Purification and characterization of a novel extracellular inulinase from a new yeast species Candida kutaonensis sp. nov. KRF1T

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A novel extracellular exoinulinase was purified and characterized from a new yeast strain KRF1T, and the gene encoding the enzyme was successfully cloned. The enzyme was stable at low pH between 3.0 and 6.5. The K m and V max values of the purified enzyme for inulin were 2.3 mg/mL and 4.8 mg/min, respectively. The optimum temperature of the inulinase was 50 °C, and the enzyme remained 78 % of activity at 60 °C for 2 h. The inulinase showed an amino acid sequence identity of 58 % to its closest homolog in Meyerozyma (Pichia) guilliermondii. In the secondary structure, the domain G (VMEVH) of the enzyme contained three unique residues (V, M, and H). Compared with previously reported inulinases, the enzyme from strain KRF1T displayed strong acid resistance, notable thermostability, and high affinity for the substrate of inulin. Based on sequence analysis of the 26S rDNA D1/D2 domain and phenotypic characterization, the yeast strain KRF1T was found to represent a novel anamorphic, ascomycetous yeast species. A complete description of the species is given and the name Candida kutaonensis sp. nov (type strain = KRF1T = AS 2.4027T = CBS 11388T) is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Azhari R, Szlak AM, Ilan E, Sideman S, Lotan N (1989) Purification and characterization of endo- and exo-inulinase. Biotechnol Appl Biochem 11:105–117

    Article  CAS  Google Scholar 

  • Bai FY, Zhao JH, Takashima M, Jia JH, Boekhout T, Nakase T (2002) Reclassification of the Sporobolomyces roseus and Sporidiobolus pararoseus complexes, with the description of Sporobolomyces phaffii sp nov. Int J Syst Evol Microbiol 52:2309–2314

    Article  CAS  Google Scholar 

  • Basso A, Spizzo P, Ferrario V, Knapic L, Savko N, Braiuca P, Ebert C, Ricca E, Calabro V, Gardossi L (2010) Endo- and exo-inulinases: enzyme-substrate interaction and rational immobilization. Biotechnol Prog 26:397–405

    CAS  Google Scholar 

  • Bradford MM (1976) Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Chen HQ, Chen XM, Li Y, Wang J, Jin ZY, Xu XM, Zhao JW, Chen TX, Xie ZJ (2009) Purification and characterisation of exo- and endo-inulinase from Aspergillus ficuum JNSP5-06. Food Chem 115:1206–1212

    Article  CAS  Google Scholar 

  • de Souza-Motta CM, Cavalcanti MAD, Porto ALF, Moreira KA, de Lima JL (2005) Aspergillus niveus Blochwitz 4128URM: new source for inulinase production. Braz Arch Biol Technol 48:343–350

    Article  Google Scholar 

  • Erdal S, Canli O, Algur OF (2011) Inulinase production by Geotrichum candidum using Jerusalem artichoke as sole carbon source. Romanian Biotechnol Lett 16:6378–6383

    CAS  Google Scholar 

  • Fell JW, Boekhout T, Fonseca A, Scorzetti G, Statzell-Tallman A (2000) Biodiversity and systematics of basidiomycetous yeasts as determined by large-subunit rDNA D1/D2 domain sequence analysis. Int J Syst Evol Microbiol 3:1351–1371

    Article  Google Scholar 

  • Gill PK, Manhas RK, Singh P (2006a) Comparative analysis of thermostability of extracellular inulinase activity from Aspergillus fumigatus with commercially available (Novozyme) inulinase. Bioresour Technol 97:355–358

    Article  CAS  Google Scholar 

  • Gill PK, Manhas RK, Singh P (2006b) Hydrolysis of inulin by immobilized thermostable extracellular exoinulinase from Aspergillus fumigatus. J Food Eng 76:369–375

    Article  CAS  Google Scholar 

  • Gong F, Zhang T, Chi ZM, Sheng J, Li J, Wang XH (2008) Purification and characterization of extracellular inulinase from a marine yeast Pichia guilliermondii and inulin hydrolysis by the purified inulinase. Biotechnol Bioproc Eng 13:533–539

    Article  CAS  Google Scholar 

  • Goosen C, Van der Maarel MJEC, Dijkhuizen L (2008) Exo-inulinase of Aspergillus niger N402: a hydrolytic enzyme with significant transfructosylating activity. Biocatal Biotransform 26:49–58

    Article  CAS  Google Scholar 

  • Hellman U, Wernstedt C, Gonez J, Heldin CH (1995) Improvement of an “In-Gel” digestion procedure for the micropreparation of internal protein fragments for amino acid sequencing. Anal Biochem 224:451–455

    Article  CAS  Google Scholar 

  • Juliana B, Coitinho VMG, de Almeida MN, Falkoski DL, de Queiroz JH, de Rezende ST (2010) Characterization of an exoinulinase produced by Aspergillus terreus CCT 4083 grown on sugar cane bagasse. J Agric Food Chem 58:8386–8391

    Article  Google Scholar 

  • Kim KY, Rhee S, Kim SI (2005) Role of the N-terminal domain of endoinulinase from Arthrobacter sp. S37 in regulation of enzyme catalysis. J Biochem Tokyo 138:27–33

    Article  CAS  Google Scholar 

  • Kurtzman CP (1998) Discussion of teleomorphic and anamorphic ascomycetous yeasts and a key to genera. In: Kurtzman CP, Fell JW (eds) The yeasts, a taxonomic study, 4th edn. Elsevier, Amsterdam, pp 111–121

    Chapter  Google Scholar 

  • Kurtzman CP, Robnett CJ (1998) Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie Van Leeuwenhoek 73:331–371

    Article  CAS  Google Scholar 

  • Kushi RT, Monti R, Contiero J (2000) Production, purification and characterization of an extracellular inulinase from Kluyveromyces marxianus var. bulgaricus. J Ind Microbiol Biotechnol 25:63–69

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  • Lim SH, Ryu JM, Lee H, Jeon JH, Sok DE, Choi ES (2011) Ethanol fermentation from Jerusalem artichoke powder using Saccharomyces cerevisiae KCCM50549 without pretreatment for inulin hydrolysis. Bioresour Technol 102:2109–2111

    Article  CAS  Google Scholar 

  • Lu HZ, Ca YM, Wu ZW, Jia JH, Bai FY (2004) Kazachstania aerobia sp nov., an ascomycetous yeast species from aerobically deteriorating corn silage. Large-subunit rDNA D1/D2 domain sequence analysis. Int J Syst Evol Microbiol 54:2431–2435

    Article  CAS  Google Scholar 

  • Makimura K, Murayama SY, Yamaguchi H (1994) Detection of a wide-range of medically important fungi by the polymerase chain-reaction. J Med Microbiol 40:358–364

    Article  CAS  Google Scholar 

  • Meyer SA, Payne RW, Yarrow D (1998) Candida Berkhout. In: Kurtzman CP, Fell JW (eds) The yeasts, a taxonomic study, 4th edn. Elsevier, Amsterdam, pp 454–573

    Chapter  Google Scholar 

  • Naidoo K, Ayyachamy M, Permaul K, Singh S (2009) Enhanced fructooligosaccharides and inulinase production by a Xanthomonas campestris pv. phaseoli KM 24 mutant. Bioproc Biosystems Eng 32:689–695

    Article  CAS  Google Scholar 

  • Nakamura T, Kurokawa T, Nakatsu S, Ueda S (1978) Crystallization and general properties of an extracellular inulinase from Aspergillus sp. Nippon Nogeikagaku Kaishi 52:159–166

    Article  CAS  Google Scholar 

  • Nakase T, Suzuki M (1986) Bullera megalospora, a new species of yeast forming large ballistospores isolated from dead leaves of Oryza sativa. Miscanthus sinensis and Sasa sp. in Japan. J Gen Appl Microbiol 32:225–240

    Article  CAS  Google Scholar 

  • Nakase T, Jindamorakot S, Imanishi Y, Am-In S, Ninomiya S, Kawasaki H, Limtong S (2010) Candida potacharoeniae sp. nov. and Candida spenceri sp. nov., two novel galactose-containing ascomycetous anamorphic yeast species isolated in Thailand. J Gen Appl Microbiol 56:287–295

    Article  CAS  Google Scholar 

  • Nguyen QD, Sujto NM, Bujna E, Rezessy-Szabo JM (2010) Production of extracellular inulinase by Thermomyces lanuginosus: optimisation of media compositions and environmental conditions. J Biotechnol 150:S321–S322

    Article  Google Scholar 

  • Ohta K, Akimoto H, Matsuda S, Toshimitsu D, Nakamura T (1998) Molecular cloning and sequence analysis of two endoinulinase genes from Aspergillus niger. Biosci Biotech Biochem 62:1731–1738

    Article  CAS  Google Scholar 

  • Pandey A, Soccol CR, Selvakumar P, Soccol VT, Krieger N, Fontana JD (1999) Recent developments in microbial inulinases—its production, properties, and industrial applications. Appl Biochem Biotechnol 81:35–52

    Article  CAS  Google Scholar 

  • Pons T, Olmea O, Chinea G, Beldarrain A, Marquez G, Acosta N, Rodriguez L, Valencia A (1998) Structural model for family 32 of glycosyl-hydrolase enzymes. Proteins 33:383–395

    Article  CAS  Google Scholar 

  • Ruivo CC, Lachance MA, Rosa CA, Bacci M Jr, Pagnocca FC (2005) Candida bromeliacearum sp. nov. and Candida ubatubensis sp. nov., two yeast species isolated from the water tanks of Canistropsis seidelii (Bromeliaceae). Int J Syst Evol Microbiol 55:2213–2217

    Article  CAS  Google Scholar 

  • Saber WIA, El-Naggar NE (2009) Optimization of fermentation conditions for the biosynthesis of inulinase by the new source; Aspergillus tamarii and hydrolysis of some inulin containing agro-wastes. Biotechnology 8:425–433

    Article  CAS  Google Scholar 

  • Sciarria TP, Romano S, Correnti A (2010) Use of mixed substrate composed of organic solid wastes and energetic crop plants (Jerusalem artichoke) for the combined production of hydrogen, ethanol and methane in a two-stage fermentation process. J Biotechnol 150:S141–S142

    Article  Google Scholar 

  • Sheng J, Chi ZM, Li J, Gao LM, Gong F (2007) Inulinase production by the marine yeast Cryptococcus aureus G7a and inulin hydrolysis by the crude inulinase. Proc Biochem 42:805–811

    Article  CAS  Google Scholar 

  • Sheng J, Chi ZM, Gong F, Li J (2008) Purification and characterization of extracellular inulinase from a marine yeast Cryptococcus aureus G7a and inulin hydrolysis by the purified inulinase. Appl Biochem Biotechnol 144:111–121

    Article  CAS  Google Scholar 

  • Singh RS, Sooch BS, Puri M (2007) Optimization of medium and process parameters for the production of inulinase from a newly isolated Kluyveromyces marxianus YS-1. Bioresour Technol 98:2518–2525

    Article  CAS  Google Scholar 

  • Skowronek M, Fiedurek J (2006) Purification and properties of extracellular endoinulinase from Aspergillus niger 20 OSM. Food Technol Biotechnol 44:53–58

    CAS  Google Scholar 

  • Spiro RG (1966) Analysis of sugars found in glycoproteins. Methods Enzymol 8:3–26

    Article  CAS  Google Scholar 

  • Thanonkeo P, Thanonkeo S, Yamada M (2010) Ethanol production from Jerusalem Artichoke (Helianthus tuberosus L.) by thermotolerant bacterium, Zymomonas mobilis. J Biotechnol 150:S152–S152

    Article  Google Scholar 

  • Vandamme EJ, Derycke DG (1983) Microbial inulinases-fermentation process, properties, and applications. Adv Appl Microbiol 29:139–176

    Article  CAS  Google Scholar 

  • Wang SA, Jia JH, Bai FY (2008) Candida alocasiicola sp. nov., Candida hainanensis sp. nov., Candida heveicola sp. nov. and Candida musiphila sp. nov., novel anamorphic, ascomycetous yeast species isolated from plants. Antonie Van Leeuwenhoek 94:257–265

    Article  Google Scholar 

  • Wang SA, Li FL, Bai FY (2010) Candida laoshanensis sp. nov. and Candida qingdaonensis sp. nov., anamorphic, ascomycetous yeast species isolated from decayed wood. Int J Syst Evol Microbiol 60:1697–1701

    Article  CAS  Google Scholar 

  • Yarrow D (1998) Methods for the isolation, maintenance and identification of yeasts. In: Kurtzman CP, Fell JW (eds) The yeasts, a taxonomic study, 4th edn. Elsevier, Amsterdam, pp 77–100

    Chapter  Google Scholar 

  • Yuan WJ, Zhao XQ, Ge XM, Bai FW (2008) Ethanol fermentation with Kluyveromyces marxianus from Jerusalem artichoke grown in salina and irrigated with a mixture of seawater and freshwater. J Appl Microbiol 105:2076–2083

    Article  CAS  Google Scholar 

  • Yuan WJ, Chang BL, Ren JG, Liu JP, Bai FW, Li YY (2011) Consolidated bioprocessing strategy for ethanol production from Jerusalem artichoke tubers by Kluyveromyces marxianus under high gravity conditions. J Appl Microbiol 112:38–44

    Article  Google Scholar 

  • Zhang T, Gong F, Chi Z, Liu GL, Chi ZM, Sheng J, Li J, Wang XH (2009) Cloning and characterization of the inulinase gene from a marine yeast Pichia guilliermondii and its expression in Pichia pastoris. Antonie Van Leeuwenhoek 95:13–22

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the National Natural Science Foundation of China (NSFC, No. 30900007), Chinese Academy of Sciences (No. KSCX2-EW-J-10), and China Agriculture Research System (No. CARS-35).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juan Sun or Shi-An Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 253 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, B., Hu, N., Sun, J. et al. Purification and characterization of a novel extracellular inulinase from a new yeast species Candida kutaonensis sp. nov. KRF1T . Appl Microbiol Biotechnol 96, 1517–1526 (2012). https://doi.org/10.1007/s00253-012-4108-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4108-y

Keywords

Navigation