Skip to main content
Log in

Methylotrophic methanogenesis governs the biogenic coal bed methane formation in Eastern Ordos Basin, China

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

To identify the methanogenic pathways present in a deep coal bed methane (CBM) reservoir associated with Eastern Ordos Basin in China, a series of geochemical and microbiological studies was performed using gas and water samples produced from the Liulin CBM reservoir. The composition and stable isotopic ratios of CBM implied a mixed biogenic and thermogenic origin of the methane. Archaeal 16S rRNA gene analysis revealed the dominance of the methylotrophic methanogen Methanolobus in the water produced. The high potential of methane production by methylotrophic methanogens was found in the enrichments using the water samples amended with methanol and incubated at 25 and 35 °C. Methylotrophic methanogens were the dominant archaea in both enrichments as shown by polymerase chain reaction (PCR)–denaturing gradient gel electrophoresis (DGGE). Bacterial 16S rRNA gene analysis revealed that fermentative, sulfate-reducing, and nitrate-reducing bacteria inhabiting the water produced were a factor in coal biodegradation to fuel methanogens. These results suggested that past and ongoing biodegradation of coal by methylotrophic methanogens and syntrophic bacteria, as well as thermogenic CBM production, contributed to the Liulin CBM reserves associated with the Eastern Ordos Basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allen TD, Caldwell ME, Lawson PA, Huhnke RL, Tanner RS (2010) Alkalibaculum bacchi gen. nov., sp. nov., a CO-oxidizing, ethanol-producing acetogen isolated from livestock-impacted soil. Int J Syst Evol Microbiol 60:2483–2489

    Article  CAS  Google Scholar 

  • Bates BL, McIntosh JC, Lohse KA, Brooks PD (2011) Influence of groundwater flowpaths, residence times and nutrients on the extent of microbial methanogenesis in coal beds: Powder River Basin, USA. Chem Geol 284:45–61

    Article  CAS  Google Scholar 

  • Bernard BB, Brooks JM, Sackett WM (1978) Light hydrocarbons in recent Texas continental shelf and slope sediments. J Geophys Res 83:4053–4061

    Article  CAS  Google Scholar 

  • Chen S, Niu L, Zhang Y (2010) Saccharofermentans acetigenes gen nov, sp nov, an anaerobic bacterium isolated from sludge treating brewery wastewater. Int J Syst Evol Microbiol 60:2735–2738

    Article  CAS  Google Scholar 

  • Chou JH, Jiang SR, Cho JC, Song J, Lin MC, Chen WM (2008) Azonexus hydrophilus sp nov, a nifH gene-harbouring bacterium isolated from freshwater. Int J Syst Evol Microbiol 58:946–951

    Article  Google Scholar 

  • Collado L, Levican A, Perez J, Figueras MJ (2011) Arcobacter defluvii sp nov, isolated from sewage samples. Int J Syst Evol Microbiol 61:2155–2161

    Article  Google Scholar 

  • Cuzin N, Ouattara AS, Labat M, Garcia JL (2001) Methanobacterium congolense sp nov, from a methanogenic fermentation of cassava peel. Int J Syst Evol Microbiol 51:489–493

    CAS  Google Scholar 

  • DeLong EF (1992) Archaea in coastal marine environments. Proc Natl Acad Sci U S A 89:5685–5689

    Article  CAS  Google Scholar 

  • Ding S, Zhu J, Zhen B, Liu Z, Liu Q (2011) Characteristics of high rank coal bed methane reservoir from the Xiangning Mining Area, Eastern Ordos Basin, China. Energ Explor Exploit 29:33–48

    Article  CAS  Google Scholar 

  • Donnelly M, Dagley S (1980) Production of methanol from aromatic acids by Pseudomonas putida. J Bacteriol 142:916–924

    CAS  Google Scholar 

  • Flores RM, Rice CA, Stricker GD, Warden A, Ellis MS (2008) Methanogenic pathways of coal-bed gas in the Powder River Basin, United States: the geologic factor. Int J Coal Geol 76:52–75

    Article  CAS  Google Scholar 

  • Friedrich M, Springer N, Ludwig W, Schink B (1996) Phylogenetic positions of Desulfofustis glycolicus gen. nov., sp. nov. and Syntrophobotulus glycolicus gen. nov., sp. nov., two new strict anaerobes growing with glycolic acid. Int J Syst Evol Microbiol 46:1065–1069

    CAS  Google Scholar 

  • Garnova ES, Zhilina TN, Tourova TP, Kostrikina NA, Zavarzin GA (2004) Anaerobic, alkaliphilic, saccharolytic bacterium Alkalibacter saccharofermentans gen. nov., sp. nov. from a soda lake in the Transbaikal region of Russia. Extremophiles 8:309–316

    Article  CAS  Google Scholar 

  • Green MS, Flanegan KC, Gilcrease PC (2008) Characterization of a methanogenic consortium enriched from a coal bed methane well in the Powder River Basin, USA. Int J Coal Geol 76:34–45

    Article  CAS  Google Scholar 

  • Gunsalus RP, Romesser JA, Wolfe RS (1978) Preparation of coenzyme M analogs and their activity in the methyl coenzyme M reductase system of Methanobacterium thermoautotrophicum. Biochemistry 17:2374–2377

    Article  CAS  Google Scholar 

  • Harris SH, Smith RL, Barker CE (2008) Microbial and chemical factors influencing methane production in laboratory incubations of low-rank subsurface coals. Int J Coal Geol 76:46–51

    Article  CAS  Google Scholar 

  • Hippe H, Vainshtein M, Gogotova G, Stackebrandt E (2003) Reclassification of Desulfobacterium macestii as Desulfomicrobium macestii comb. nov. Int J Syst Evol Microbiol 53:1127–1130

    Article  Google Scholar 

  • Kato S, Haruta S, Cui ZJ, Ishii M, Yokota A, Igarashi Y (2004) Clostridium straminisolvens sp. nov., a moderately thermophilic, aerotolerant and cellulolytic bacterium isolated from a cellulose-degrading bacterial community. Int J Syst Evol Microbiol 54:2043–2047

    Article  Google Scholar 

  • Krumholz LR, Harris SH, Tay ST, Suflita JM (1999) Characterization of two subsurface H-2-utilizing bacteria, Desulfomicrobium hypogeium sp nov and Acetobacterium psammolithicum sp nov., and their ecological roles. Appl Environ Microbiol 65:2300–2306

    CAS  Google Scholar 

  • Lane D (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 115–175

    Google Scholar 

  • Liu A, Garcia-Dominguez E, Rhine E, Young L (2004) A novel arsenate respiring isolate that can utilize aromatic substrates. FEMS Microbiol Ecol 48:323–332

    Article  CAS  Google Scholar 

  • Matsutani N, Nakagawa T, Nakamura K, Takahashi R, Yoshihara K, Tokuyama T (2009) Enrichment of a novel marine ammonia-oxidizing archaeon obtained from sand of an eelgrass zone. Microb Environ 26:23–29

    Article  Google Scholar 

  • Mechichi T, Stackebrandt E, Gad'on N, Fuchs G (2002) Phylogenetic and metabolic diversity of bacteria degrading aromatic compounds under denitrifying conditions, and description of Thauera phenylacetica sp. nov., Thauera aminoaromatica sp. nov., and Azoarcus buckelii sp. nov. Arch Microbiol 178:26–35

    Article  CAS  Google Scholar 

  • Midgley DJ, Hendry P, Pinetown KL, Fuentes D, Gong S, Mitchell DL, Faiz M (2010) Characterisation of a microbial community associated with a deep, coal seam methane reservoir in the Gippsland Basin, Australia. Int J Coal Geol 82:232–239

    Article  CAS  Google Scholar 

  • Mochimaru H, Tamaki H, Hanada S, Imachi H, Nakamura K, Sakata S, Kamagata Y (2009) Methanolobus profundi sp. nov., a methylotrophic methanogen isolated from deep subsurface sediments in a natural gas field. Int J Syst Evol Microbiol 59:714–718

    Article  CAS  Google Scholar 

  • Morasch B, Schink B, Tebbe CC, Meckenstock RU (2004) Degradation of o-xylene and m-xylene by a novel sulfate-reducer belonging to the genus Desulfotomaculum. Arch Microbiol 181:407–417

    Article  CAS  Google Scholar 

  • Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    CAS  Google Scholar 

  • Oremland RS, Polcin S (1982) Methanogenesis and sulfate reduction: competitive and noncompetitive substrates in estuarine sediments. Appl Environ Microbiol 44:1270–1276

    CAS  Google Scholar 

  • Paarup M, Friedrich MW, Tindall BJ, Finster K (2006) Characterization of the psychrotolerant acetogen strain SyrA5 and the emended description of the species Acetobacterium carbinolicum. Anton Leeuw 89:55–69

    Article  CAS  Google Scholar 

  • Penner T, Foght J, Budwill K (2010) Microbial diversity of western Canadian subsurface coal beds and methanogenic coal enrichment cultures. Int J Coal Geol 82:81–93

    Article  CAS  Google Scholar 

  • Pfeiffer RS, Ulrich GA, Finkelstein M (2010) Chemical amendments for the stimulation of biogenic gas generation in deposits of carbonaceous material. US Patent No. 7696132

  • Qiu YL, Sekiguchi Y, Imachi H, Kamagata Y, Tseng IC, Cheng SS, Ohashi A, Harada H (2004) Identification and isolation of anaerobic, syntrophic phthalate isomer-degrading microbes from methanogenic sludges treating wastewater from terephthalate manufacturing. Appl Environ Microbiol 70:1617–1626

    Article  CAS  Google Scholar 

  • Ramamoorthy S, Sass H, Langner H, Schumann P, Kroppenstedt R, Spring S, Overmann J, Rosenzweig R (2006) Desulfosporosinus lacus sp. nov., a sulfate-reducing bacterium isolated from pristine freshwater lake sediments. Int J Syst Evol Microbiol 56:2729–2736

    Article  CAS  Google Scholar 

  • Raskin L, Stromley J, Rittmann B, Stahl D (1994) Group-specific 16S rRNA hybridization probes to describe natural communities of methanogens. Appl Environ Microbiol 60:1232–1240

    CAS  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ (2009) Introducing Mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  CAS  Google Scholar 

  • Scott AR, Kaiser W, Ayers WB (1994) Thermogenic and secondary biogenic gases, San Juan Basin, Colorado and New Mexico—implications for coal bed gas producibility. Bull Am Assoc Petrol Geol 78:1186–1209

    CAS  Google Scholar 

  • Shimizu S, Akiyama M, Naganuma T, Fujioka M, Nako M, Ishijima Y (2007) Molecular characterization of microbial communities in deep coal seam groundwater of northern Japan. Geobiology 5:423–433

    Article  CAS  Google Scholar 

  • Shimizu S, Upadhye R, Ishijima Y, Naganuma T (2011) Methanosarcina horonobensis sp. nov., a methanogenic archaeon isolated from a deep subsurface Miocene formation. Int J Syst Evol Microbiol 61:2503–2507

    Article  CAS  Google Scholar 

  • Shinoda Y, Sakai Y, Uenishi H, Uchihashi Y, Hiraishi A, Yukawa H, Yurimoto H, Kato N (2004) Aerobic and anaerobic toluene degradation by a newly isolated denitrifying bacterium, Thauera sp. strain DNT-1. Appl Environ Microbiol 70:1385–1392

    Article  CAS  Google Scholar 

  • Simankova MV, Kotsyurbenko OR, Lueders T, Nozhevnikova AN, Wagner B, Conrad R, Friedrich MW (2003) Isolation and characterization of new strains of methanogens from cold terrestrial habitats. Syst Appl Microbiol 26:312–318

    Article  Google Scholar 

  • Smith CJ, Nedwell DB, Dong LF, Osborn AM (2006) Evaluation of quantitative polymerase chain reaction-based approaches for determining gene copy and gene transcript numbers in environmental samples. Environ Microbiol 8:804–815

    Article  CAS  Google Scholar 

  • Steven B, Briggs G, McKay CP, Pollard WH, Greer CW, Whyte LG (2007) Characterization of the microbial diversity in a permafrost sample from the Canadian high Arctic using culture-dependent and culture-independent methods. FEMS Microbiol Ecol 59:513–523

    Article  CAS  Google Scholar 

  • Strapoć D, Mastalerz M, Eble C, Schimmelmann A (2007) Characterization of the origin of coal bed gases in southeastern Illinois Basin by compound-specific carbon and hydrogen stable isotope ratios. Org Geochem 38:267–287

    Article  Google Scholar 

  • Strapoć D, Picardal FW, Turich C, Schaperdoth I, Macalady JL, Lipp JS, Lin YS, Ertefai TF, Schubotz F, Hinrichs KU, Mastalerz M, Schimmelmann A (2008) Methane-producing microbial community in a coal bed of the Illinois Basin. Appl Environ Microbiol 74:2424–2432

    Article  Google Scholar 

  • Strapoć D, Ashby M, Wood L, Levinson R, Huizinga B (2010) Significant contribution of methyl/methanol-utilising methanogenic pathway in a subsurface biogas environment. In: Skovhus T, Whitby C (eds) Applied microbiology and molecular biology in oilfield systems. Springer, pp 211–216

  • Strapoć D, Mastalerz M, Dawson K, Macalady J, Callaghan AV, Wawrik B, Turich C, Ashby M (2011) Biogeochemistry of microbial coal-bed methane. Annu Rev Earth Pl Sc 39:617–656

    Article  Google Scholar 

  • Su X, Zhang L, Zhang R (2003) The abnormal pressure regime of the Pennsylvanian No. 8 coal bed methane reservoir in Liulin-Wupu District, Eastern Ordos Basin, China. Int J Coal Geol 53:227–239

    Article  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  Google Scholar 

  • Wu SY, Lai MC (2011) Methanogenic archaea isolated from Taiwan’s Chelungpu Fault. Appl Environ Microbiol 77:830–838

    Article  CAS  Google Scholar 

  • Zhang G, Jiang N, Liu X, Dong X (2008) Methanogenesis from methanol at low temperatures by a novel psychrophilic methanogen, “Methanolobus psychrophilus” sp. nov., prevalent in Zoige Wetland of the Tibetan Plateau. Appl Environ Microbiol 74:6114–6120

    Article  CAS  Google Scholar 

  • Zhilina T, Kevbrin V, Tourova T, Lysenko A, Kostrikina N, Zavarzin G (2005) Clostridium alkalicellum sp. nov., an obligately alkaliphilic cellulolytic bacterium from a soda lake in the Baikal region. Microbiology 74:557–566

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to China United Coalbed Methane Co., Ltd., for helping with sampling opportunities on the water produced. This work was supported by National Science and Technology Major Project, China (2011ZX05060-005 and 2009ZX05039-003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhisheng Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, H., Yu, Z., Liu, R. et al. Methylotrophic methanogenesis governs the biogenic coal bed methane formation in Eastern Ordos Basin, China. Appl Microbiol Biotechnol 96, 1587–1597 (2012). https://doi.org/10.1007/s00253-012-3889-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-3889-3

Keywords

Navigation