Skip to main content
Log in

Control of the heparosan N-deacetylation leads to an improved bioengineered heparin

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The production of the anticoagulant drug heparin from non-animal sources has a number of advantages over the current commercial production of heparin. These advantages include better source material availability, improved quality control, and reduced concerns about animal virus or prion impurities. A bioengineered heparin would have to be chemically and biologically equivalent to be substituted for animal-sourced heparin as a pharmaceutical. In an effort to produce bioengineered heparin that more closely resembles pharmaceutical heparin, we have investigated a key step in the process involving the N-deacetylation of heparosan. The extent of N-deacetylation directly affects the N-acetyl/N-sulfo ratio in bioengineered heparin and also impacts its molecular weight. Previous studies have demonstrated that the presence and quantity of N-acetylglucosamine in the nascent glycosaminoglycan chain, serving as the substrate for the subsequent enzymatic modifications (C5 epimerization and O-sulfonation), can impact the action of these enzymes and, thus, the content and distribution of iduronic acid and O-sulfo groups. In this study, we control the N-deacetylation of heparosan to produce a bioengineered heparin with an N-acetyl/N-sulfo ratio and molecular weight that is similar to animal-sourced pharmaceutical heparin. The structural composition and anticoagulant activity of the resultant bioengineered heparin was extensively characterized and compared to pharmaceutical heparin obtained from porcine intestinal mucosa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agnelli G, Piovella F, Buoncristiani P, Severi P, Pini M, D’Angelo A, Beltrametti C, Damiani M, Andrioli GC, Pugliese R, Iorio A, Brambilla G (1998) Enoxaparin plus compression stockings compared with compression stockings alone in the prevention of venous thromboembolism after elective neurosurgery. N Engl J Med 339:80–85

    Article  CAS  Google Scholar 

  • Casu B, Lindahl U (2001) Structure and biological interactions of heparin and heparan sulfate. Adv Carbohydr Chem Biochem 57:159–206

    Article  CAS  Google Scholar 

  • Casu B, Grazioli G, Razi N, Guerrini M, Naggi A, Torri G, Oreste P, Tursi F, Zoppetti G, Lindahl U (1994) Heparin-like compounds prepared by chemical modification of capsular polysaccharide from E. coli K5. Carbohydr Res 263:271–284

    Article  CAS  Google Scholar 

  • Cesaretti M, Luppi E, Maccari F, Volpi N (2004) Isolation and characterization of a heparin with high anticoagulant activity from the clam Tapes philippinarum: evidence for the presence of a high content of antithrombin III binding site. Glycobiology 14:1275–1284

    Article  CAS  Google Scholar 

  • Chen J, Avci FY, Munoz EM, McDowell LM, Chen M, Pedersen LC, Zhang L, Linhardt RJ, Liu J (2005) Enzymatic redesigning of biologically active heparan sulfate. J Biol Chem 280:42817–42825

    Article  CAS  Google Scholar 

  • Chen J, Jones CL, Liu J (2007) Using an enzymatic combinatorial approach to identify anticoagulant heparan sulfate structures. Chem Biol 14:986–993

    Article  CAS  Google Scholar 

  • Dahlback B (2000) Blood coagulation. Lancet 355:1627–1632

    Article  CAS  Google Scholar 

  • Erbing C, Granath K, Kenne L, Lindberg B (1976) A new method for the N-deacetylation of carbohydrates. Carbohydr Res 47:C5–C7

    Article  CAS  Google Scholar 

  • Gerard N, Pierre B (1961) Process of purifying heparin, and product produced therefrom. US patent #2989438

  • Guerrini M, Bisio A, Torri G (2001) Combined quantitative (1)H and (13)C nuclear magnetic resonance spectroscopy for characterization of heparin preparations. Semin Thromb Hemost 27:473–482

    Article  CAS  Google Scholar 

  • Guerrini M, Beccati D, Shriver Z, Naggi A, Viswanathan K, Bisio A, Capila I, Lansing JC, Guglieri S, Fraser B, Al-Hakim A, Gunay NS, Zhang ZQ, Robinson L, Buhse L, Nasr M, Woodcock J, Langer R, Venkataraman G, Linhardt RJ, Casu B, Torri G, Sasisekharan R (2008) Oversulfated chondroitin sulfate is a contaminant in heparin associated with adverse clinical events. Nat Biotechnol 26:669–675

    Article  CAS  Google Scholar 

  • Guo X, Condra M, Kimura K, Berth G, Dautzenberg H, Dubin PL (2003) Determination of molecular weight of heparin by size exclusion chromatography with universal calibration. Anal Biochem 312:33–39

    Article  CAS  Google Scholar 

  • Kishimoto TK, Viswanathan K, Ganguly T, Elankumaran S, Smith S, Pelzer K, Lansing JC, Sriranganathan N, Zhao GL, Galcheva-Gargova Z, Al-Hakim A, Bailey GS, Fraser B, Roy S, Rogers-Cotrone T, Buhse L, Whary M, Fox J, Nasr M, Dal Pan GJ, Shriver Z, Langer RS, Venkataraman G, Austen KF, Woodcock J, Sasisekharan R (2008) Contaminated heparin associated with adverse clinical events and activation of the contact system. N Engl J Med 358:2457–2467

    Article  CAS  Google Scholar 

  • Korir AK, Limtiaco JF, Gutierrez SM, Larive CK (2008) Ultraperformance ion-pair liquid chromatography coupled to electrospray time-of-flight mass spectrometry for compositional profiling and quantification of heparin and heparan sulfate. Anal Chem 80:1297–1306

    Article  CAS  Google Scholar 

  • Kuberan B, Beeler DL, Lech M, Wu ZL, Rosenberg RD (2003a) Chemoenzymatic synthesis of classical and non-classical anticoagulant heparan sulfate polysaccharides. J Biol Chem 278:52613–52621

    Article  CAS  Google Scholar 

  • Kuberan B, Lech MZ, Beeler DL, Wu ZL, Rosenberg RD (2003b) Enzymatic synthesis of antithrombin III-binding heparan sulfate pentasaccharide. Nat Biotechnol 21:1343–1346

    Article  CAS  Google Scholar 

  • Kusche M, Hannesson HH, Lindahl U (1991) Biosynthesis of heparin. Use of Escherichia coli K5 capsular polysaccharide as a model substrate in enzymic polymer-modification reactions. Biochem J 275(Pt 1):151–158

    Article  CAS  Google Scholar 

  • Li J, Hagner-McWhirter A, Kjellen L, Palgi J, Jalkanen M, Lindahl U (1997) Biosynthesis of heparin/heparan sulfate. cDNA cloning and expression of D-glucuronyl C5-epimerase from bovine lung. J Biol Chem 272:28158–28163

    Article  CAS  Google Scholar 

  • Lindahl U (2000) ‘Heparin’—from anticoagulant drug into the new biology. Glycoconj J 17:597–605

    Article  CAS  Google Scholar 

  • Lindahl U, Li JP, Kusche-Gullberg M, Salmivirta M, Alaranta S, Veromaa T, Emeis J, Roberts I, Taylor C, Oreste P, Zoppetti G, Naggi A, Torri G, Casu B (2005) Generation of “Neoheparin” from E. coli K5 capsular polysaccharide. J Med Chem 48:349–352

    Article  CAS  Google Scholar 

  • Linhardt RJ (1991) Heparin: an important drug enters its seventh decade. Chem Ind 2:45–50

    Google Scholar 

  • Linhardt RJ (2003) 2003 Claude S. Hudson award address in carbohydrate chemistry. Heparin: structure and activity. J Med Chem 46:2551–2564

    Article  CAS  Google Scholar 

  • Linhardt RJ, Gunay NS (1999) Production and chemical processing of low molecular weight heparins. Semin Thromb Hemost 25(Suppl 3):5–16

    CAS  PubMed  Google Scholar 

  • Linhardt RJ, Toida T (1997) Heparin oligosaccharides: new analogues—development and applications. In: Nieforth ZJ, Wa KA (eds) Carbohydrates in drug design. Marcel Dekker, New York, pp 277–341

    Google Scholar 

  • Linhardt RJ, Rice KG, Kim YS, Lohse DL, Wang HM, Loganathan D (1988) Mapping and quantification of the major oligosaccharide components of heparin. Biochem J 254:781–787

    Article  CAS  Google Scholar 

  • Liu H, Zhang Z, Linhardt RJ (2009) Lessons learned from the contamination of heparin. Nat Prod Rep 26:313–321

    Article  CAS  Google Scholar 

  • Loganathan D, Wang HM, Mallis LM, Linhardt RJ (1990) Structural variation in the antithrombin III binding site region and its occurrence in heparin from different sources. Biochemistry 29:4362–4368

    Article  CAS  Google Scholar 

  • Ly M, Wang Z, Laremore TN, Zhang F, Zhong W, Pu D, Zagorevski DV, Dordick JS, Linhardt RJ (2011) Analysis of E. coli K5 capsular polysaccharide heparosan. Anal Bioanal Chem 399:737–745

    Article  CAS  Google Scholar 

  • Munoz EM, Linhardt RJ (2004) Heparin-binding domains in vascular biology. Arterioscler Thromb Vasc Biol 24:1549–1557

    Article  CAS  Google Scholar 

  • Okuyama T, Yoshida K, Sakurai K, Ogura T, Horie K, Tawada A, Hara T (1975) Method of separating and recovering mucopolysaccharides from connective tissue of animals. US patent #3862003

  • Petitou M, Herault JP, Bernat A, Driguez PA, Duchaussoy P, Lormeau JC, Herbert JM (1999) Synthesis of thrombin-inhibiting heparin mimetics without side effects. Nature 398:417–422

    Article  CAS  Google Scholar 

  • Vidic H-J (1981) Process for the preparation of heparin. US patent #4283530

  • Wang Z, Ly M, Zhang F, Zhong W, Suen A, Hickey AM, Dordick JS, Linhardt RJ (2010) E. coli K5 fermentation and the preparation of heparosan, a bioengineered heparin precursor. Biotechnol Bioeng 107:964–973

    Article  CAS  Google Scholar 

  • Zhang L, Lawrence R, Schwartz JJ, Bai X, Wei G, Esko JD, Rosenberg RD (2001) The effect of precursor structures on the action of glucosaminyl 3-O-sulfotransferase-1 and the biosynthesis of anticoagulant heparan sulfate. J Biol Chem 276:28806–28813

    Article  CAS  Google Scholar 

  • Zhang ZQ, McCallum SA, Xie J, Nieto L, Corzana F, Jimenez-Barbero J, Chen M, Liu J, Linhardtt RJ (2008) Solution structures of chemoenzymatically synthesized heparin and its precursors. J Am Chem Soc 130:12998–13007

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for funding from the NIH in the form of grant # HL096972 and the support of the Bioengineered Heparin Consortium for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Linhardt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Z., Yang, B., Zhang, Z. et al. Control of the heparosan N-deacetylation leads to an improved bioengineered heparin. Appl Microbiol Biotechnol 91, 91–99 (2011). https://doi.org/10.1007/s00253-011-3231-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3231-5

Keywords

Navigation