Skip to main content
Log in

In vitro evolution of styrene monooxygenase from Pseudomonas putida CA-3 for improved epoxide synthesis

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The styAB genes from Pseudomonas putida CA-3, which encode styrene monooxygenase, were subjected to three rounds of in vitro evolution using error-prone polymerase chain reaction with a view to improving the rate of styrene oxide and indene oxide formation. Improvements in styrene monooxygenase activity were monitored using an indole to indigo conversion assay. Each round of random mutagenesis generated variants improved in indigo formation with third round variants improved nine- to 12-fold over the wild type enzyme. Each round of in vitro evolution resulted in two to three amino acid substitutions in styrene monooxygenase. While the majority of mutations occurred in styA (oxygenase), mutations were also observed in styB (reductase). A mutation resulting in the substitution of valine with isoleucine at amino acid residue 303 occurred near the styrene and flavin adenine dinucleotide binding site of styrene monooxygenase. One mutation caused a shift in the reading frame in styA and resulted in a StyA variant that is 19 amino acids longer than the wild-type protein. Whole cells expressing the best styrene monooxygenase variants (round 3) exhibited eight- and 12-fold improvements in styrene and indene oxidation rates compared to the wild-type enzyme. In all cases, a single enantiomer, (S)-styrene oxide, was formed from styrene while (1S,2R)-indene oxide was the predominant enantiomer (e.e. 97%) formed from indene. The average yield of styrene oxide and indene oxide from their respective alkene substrates was 65% and 90%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Archelas A, Furstoss R (1997) Synthesis of enantiopure epoxides through biocatalytic approaches. Annu Rev Microbiol 51:491–525

    Article  CAS  Google Scholar 

  • Beltrametti F et al (1997) Sequencing and functional analysis of styrene catabolism genes from Pseudomonas fluorescens ST. Appl Environ Microbiol 63:2232–2239

    CAS  Google Scholar 

  • Bestetti G, Galli E, Benigni C, Orsini F, Pelizzioni F (1989) Biotransformations of styrenes by a Pseudomonas putida. Appl Microbiol Biotechnol 30:252–256

    Article  CAS  Google Scholar 

  • Bornscheuer UT, Pohl M (2001) Improved biocatalysts by directed evolution and rational protein design. Curr Opin Chem Biol 5:137–143

    Article  CAS  Google Scholar 

  • Di Gennaro P, Colmegna P, Galli E, Sello G, Pelizzioni F, Bestetti G (1999) A new biocatalyst for production of optically pure aryl epoxides by styrene monooxygenase from Pseudomonas fluorescens ST. Appl Environ Microbiol 65:2794–2797

    Google Scholar 

  • Duetz WA, van Beilen JB, Witholt B (2001) Using proteins in their natural environment: potential and limitations of microbial whole-cell hydroxylations in applied biocatalysis. Curr Opin Biotechnol 12:419–425

    Article  CAS  Google Scholar 

  • Dunn HD et al (2005) Aromatic and aliphatic hydrocarbon consumption and transformation by the styrene degrading strain Pseudomonas putida CA-3. FEMS Microbiol Lett 249:267–273

    Article  CAS  Google Scholar 

  • Eppink MH, Schreuder HA, Van Berkel WJ (1997) Identification of a novel conserved sequence motif in flavoprotein hydroxylases with a putative dual function in FAD/NAD(P)H binding. Protein Sci 6:2454–2458

    Article  CAS  Google Scholar 

  • Farinas ET, Bulter T, Arnold FH (2001) Directed enzyme evolution. Curr Opin Biotechnol 12:545–551

    Article  CAS  Google Scholar 

  • Feenstra AK, Hofstetter K, Bosch R, Schmid A, Commandeur JNM, Vermeulen NPE (2006) Enantioselective substrate binding in a monooxygenase protein model by molecular dynamics and docking. Biophys J 91:3206–3216

    Article  CAS  Google Scholar 

  • Glieder A, Farinas ET, Arnold FH (2002) Laboratory evolution of a soluble, self-sufficient, highly active alkane hydroxylase. Nat Biotechnol 20:1135–1139

    Article  CAS  Google Scholar 

  • Harayama S, Kok M, Neidle EL (1992) Functional and evolutionary relationships among diverse oxygenases. Annu Rev Microbiol 46:565–601

    Article  CAS  Google Scholar 

  • Hofsteenge J, Vereijken JM, Weijer WJ, Beintema JJ, Wierenga RK, Drenth J (1980) Primary and tertiary structure studies of p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens. Eur J Biochem 113:141–150

    Article  CAS  Google Scholar 

  • Hollmann F, Lin P-C, Witholt B, Schmid A (2003) Stereospecific biocatalytic epoxidation: the first example of direct regeneration of a FAD-dependent monooxygenase for catalysis. J Am Chem Soc 125:8209–8217

    Article  CAS  Google Scholar 

  • Kantz A, Chin F, Nallamothu N, Nguyen T, Gassner GT (2005) Mechanism of flavin transfer and oxygen activation by the two-component flavoenzyme styrene monooxygenase. Arch Biochem Biophys 442:102–116

    Article  CAS  Google Scholar 

  • Li Z et al (2002) Oxidative biotransformations using oxygenases. Curr Opin Chem Biol 6:136–144

    Article  CAS  Google Scholar 

  • Lindahl E, Hess B, van der Spoel D (2001) GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Model 7:306–317

    CAS  Google Scholar 

  • O'Connor KE, Hartmans S (1998) Indigo formation by aromatic hydrocarbon-degrading bacteria. Biotechnol Lett 20:219–223

    Article  Google Scholar 

  • O'Connor KE, Buckley CM, Hartmans S, Dobson ADW (1995) Possible regulatory role for nonaromatic carbon sources in styrene degradation by Pseudomonas putida CA-3. Appl Environ Microbiol 61:544–548

    Google Scholar 

  • O'Connor KE, Dobson ADW, Hartmans S (1997) Indigo formation by microorganisms expressing styrene monooxygenase activity. Appl Environ Microbiol 63:4287–4291

    Google Scholar 

  • O'Leary ND, O'Connor KE, Duetz W, Dobson ADW (2001) Transcriptional regulation of styrene degradation in Pseudomonas putida CA-3. Microbiol 147:211–218

    Google Scholar 

  • Otto K, Hofstetter K, Rothlisberger M, Witholt B, Schmid A (2004) Biochemical characterization of StyAB from Pseudomonas sp. strain VLB120 as a two-component flavin-diffusible monooxygenase. J Bacteriol 186:5292–5302

    Article  CAS  Google Scholar 

  • Panke S, Witholt B, Schmid A, Wubbolts MG (1998) Towards a biocatalyst for (S)-styrene oxide production: characterization of the styrene degradation pathway of Pseudomonas sp. strain VLB120. Appl Environ Microbiol 64:2032–2043

    CAS  Google Scholar 

  • Panke S, Meyer A, Huber CM, Witholt B, Wubbolts MG (1999) An alkane-responsive expression system for the production of fine chemicals. Appl Environ Microbiol 65:2324–2332

    CAS  Google Scholar 

  • Panke S, Wubbolts MG, Schmid A, Witholt B (2000) Production of enantiopure styrene oxide by recombinant Escherichia coli synthesizing a two-component styrene monooxygenase. Biotechnol Bioeng 69:91–100

    Article  CAS  Google Scholar 

  • Park J-B et al (2006) The efficiency of recombinant Escherichia coli as biocatalyst for stereospecific epoxidation. Biotechnol Bioeng 95:501–512

    Article  CAS  Google Scholar 

  • Reetz MT (2001) Combinatorial and evolution-based methods in the creation of enantioselective catalysts. Angew Chem Int Ed 40:284–310

    Article  CAS  Google Scholar 

  • Ridder L, Mulholland AJ, Rietjens I, Vervoort J (2000) A quantum mechanical/molecular mechanical study of the hydroxylation of phenol and halogenated derivatives by phenol hydroxylase. J Am Chem Soc 122:8728–8738

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Schmid A, Hofstetter K, Feiten H, Hollmann F, Witholt B (2001) Integrated biocatalytic synthesis on gram scale: the highly enantioselective preparation of chiral oxiranes with styrene monooxygenase. Adv Synth Catal 343:732–737

    Article  CAS  Google Scholar 

  • Stratagene (2005) GeneMorph II random mutagenesis kit: instruction manual. Stratagene, La Jolla

    Google Scholar 

  • van Beilen JB, Duetz WA, Schmid A, Witholt B (2003) Practical issues in the application of oxygenases. Trends Biotechnol 21:170–177

    Article  CAS  Google Scholar 

  • van Berkel WJH, Kamerbeekb NM, Fraaije MW (2006) Flavoprotein monooxygenases, a diverse class of oxidative biocatalysts. J Biotechnol 124:670–689

    Article  CAS  Google Scholar 

  • Velasco A, Alonso S, Garcıa JL, Perera J, Diaz E (1998) Genetic and functional analysis of the styrene catabolic cluster of Pseudomonas sp. strain Y2. J Bacteriol 180:1063–1071

    CAS  Google Scholar 

  • Wahler D, Reymond J-L (2001) Novel methods for biocatalyst screening. Curr Opin Chem Biol 5:152–158

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Science Foundation Ireland (grant no. 04/IN3/B581). We thank Dr. Derek Boyd and Dr. Narain Sharma, Queens University Belfast, for the synthesis of 1S-2R-indene oxide.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin E. O’Connor.

Additional information

Lucas J. Gursky and Jasmina Nikodinovic-Runic made an equal contribution to the work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gursky, L.J., Nikodinovic-Runic, J., Feenstra, K.A. et al. In vitro evolution of styrene monooxygenase from Pseudomonas putida CA-3 for improved epoxide synthesis. Appl Microbiol Biotechnol 85, 995–1004 (2010). https://doi.org/10.1007/s00253-009-2096-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-2096-3

Keywords

Navigation