Skip to main content
Log in

Glutamate production by Corynebacterium glutamicum: dependence on the oxoglutarate dehydrogenase inhibitor protein OdhI and protein kinase PknG

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

We recently showed that the activity of the 2-oxoglutarate dehydrogenase complex (ODHC) in Corynebacterium glutamicum is controlled by a novel regulatory mechanism that involves a 15-kDa protein called OdhI and serine/threonine protein kinase G (PknG). In its unphosphorylated state, OdhI binds to the E1 subunit (OdhA) of ODHC and, thereby, inhibits its activity. Inhibition is relieved by phosphorylation of OdhI at threonine-14 by PknG under conditions requiring high ODHC activity. In this work, evidence is provided that the dephosphorylation of phosphorylated OdhI is catalyzed by a phospho-Ser/Thr protein phosphatase encoded by the gene cg0062, designated ppp. As a decreased ODHC activity is important for glutamate synthesis, we investigated the role of OdhI and PknG for glutamate production under biotin limitation and after addition of Tween-40, penicillin, or ethambutol. A ΔodhI mutant formed only 1–13% of the glutamate synthesized by the wild type. Thus, OdhI is essential for efficient glutamate production. The effect of a pknG deletion on glutamate synthesis was dependent on the induction conditions. Under strong biotin limitation and in the presence of ethambutol, the ΔpknG mutant showed significantly increased glutamate production, offering a new way to improve production strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

cdw:

cell dry weight

PknG:

serine/threonine protein kinase G

ODHC:

2-oxoglutarate dehydrogenase complex

OdhI:

oxoglutarate dehydrogenase inhibitor protein

TCA cycle:

tricarboxylic acid cycle

References

  • Asakura Y, Kimura E, Usuda Y, Kawahara Y, Matsui K, Osumi T, Nakamatsu T (2007) Altered metabolic flux due to deletion of odhA causes l-glutamate overproduction in Corynebacterium glutamicum. Appl Environ Microbiol 73:1308–1319

    CAS  PubMed  Google Scholar 

  • Delaunay S, Gourdon P, Lapujade P, Mailly E, Oriol E, Engasser JM, Lindley ND, Goergen JL (1999) An improved temperature triggered process for glutamate production with Corynebacterium glutamicum. Enzyme Microb Technol 25:762–768

    CAS  Google Scholar 

  • Duperray F, Jezequel D, Ghazi A, Letellier L, Shechter, E. (1992) Excretion of glutamate from Corynebacterium glutamicum triggered by amine surfactants. Biochim Biophys Acta 1103:250–258

    CAS  PubMed  Google Scholar 

  • Eggeling L, Bott M (2005) Handbook of Corynebacterium glutamicum. CRC Press, Boca Raton, FL, USA

    Google Scholar 

  • Eggeling L, Krumbach K, Sahm H (2001) l-glutamate efflux with Corynebacterium glutamicum: why is penicillin treatment or Tween addition doing the same? J Mol Microbiol Biotechnol 3:67–68

    CAS  PubMed  Google Scholar 

  • Gutmann M, Hoischen C, Krämer R (1992) Carrier-mediated glutamate secretion by Corynebacterium glutamicum under biotin limitation. Biochim Biophys Acta 1112:115–123

    CAS  PubMed  Google Scholar 

  • Hanahan D (1985) Techniques for transformation of E. coli. In: Glover DM (eds) DNA-Cloning: a practical approach. IRL-Press, Oxford, pp 109–135

    Google Scholar 

  • Hermann T (2003) Industrial production of amino acids by coryneform bacteria. J Biotechnol 104:155–172

    CAS  PubMed  Google Scholar 

  • Hoischen C, Krämer R (1989) Evidence for an efflux carrier system involved in the secretion of glutamate by Corynebacterium glutamicum. Arch Microbiol 151:342–347

    CAS  Google Scholar 

  • Hoischen C, Krämer R (1990) Membrane alteration is necessary but not sufficient for effective glutamate secretion in Corynebacterium glutamicum. J Bacteriol 172:3409–3416

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kabus A, Niebisch A, Bott M (2007) Role of cytochrome bd oxidase from Corynebacterium glutamicum in growth and lysine production. Appl Environ Microbiol 73:861–868

    CAS  PubMed  Google Scholar 

  • Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Krämer R, Linke B, McHardy AC, Meyer F, Möckel B, Pfefferle W, Pühler A, Rey DA, Rückert C, Rupp O, Sahm H, Wendisch VF, Wiegräbe I, Tauch A (2003) The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of l-aspartate-derived amino acids and vitamins. J Biotechnol 104:5–25

    CAS  PubMed  Google Scholar 

  • Kanzaki T, Isobe K, Okazaki H, Motizuki K, Fukuda H (1967) l-Glutamic acid production. Part I. Selection of an oleic acid-requiring mutant and its properties. Agric Biol Chem 31:1307–1313

    CAS  Google Scholar 

  • Kataoka M, Hashimoto KI, Yoshida M, Nakamatsu T, Horinouchi S, Kawasaki H (2006) Gene expression of Corynebacterium glutamicum in response to the conditions inducing glutamate overproduction. Lett Appl Microbiol 42:471–476

    CAS  PubMed  Google Scholar 

  • Kawahara Y, Takahashi-Fuke K, Shimizu E, Nakamatsu T, Nakamori S (1997) Relationship between the glutamate production and the activity of 2-oxoglutarate dehydrogenase in Brevibacterium lactofermentum. Biosci Biotechnol Biochem 61:1109–1112

    CAS  PubMed  Google Scholar 

  • Keilhauer C, Eggeling L, Sahm H (1993) Isoleucine synthesis in Corynebacterium glutamicum: molecular analysis of the ilvBilvNilvC operon. J Bacteriol 175:5595–5603

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura E (2002) Triggering mechanism of l-glutamate overproduction by DtsR1 in coryneform bacteria. J Biosci Bioeng 94:545–551

    CAS  PubMed  Google Scholar 

  • Kimura E, Abe C, Kawahara Y, Nakamatsu T, Tokuda H (1997) A dtsR gene-disrupted mutant of Brevibacterium lactofermentum requires fatty acids for growth and efficiently produces l-glutamate in the presence of an excess of biotin. Biochem Biophys Res Commun 234:157–161

    CAS  PubMed  Google Scholar 

  • Kinoshita S, Udaka S, Shimono M (1957) Studies on the amino acid fermentation. I. Production of l-glutamic acid by various microorganisms. J Gen Appl Microbiol 3:193–205

    CAS  Google Scholar 

  • Krug A, Wendisch VF, Bott M (2005) Identification of AcnR, a TetR-type repressor of the aconitase gene acn in Corynebacterium glutamicum. J Biol Chem 280:585–595

    CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    CAS  Google Scholar 

  • Liebl W (2005) Corynebacterium taxonomy. In: Eggeling L, Bott M (eds) Handbook of Corynebacterium glutamicum. CRC Press, Boca Raton, pp 9–34

    Google Scholar 

  • Momose H, Takagi T (1978) Glutamic acid production in biotin-rich media by temperature sensitive mutants of Brevibacterium lactofermentum, a novel fermentation process. Agric Biol Chem 42:1911–1917

    CAS  Google Scholar 

  • Nakao Y, Kikuchi M, Suzuki M, Doi M (1972) Microbial production of l-glutamic acid by glycerol auxotrophs. I. Induction of glycerol auxotrophs and production of l-glutamic acid from n-paraffins. Agric Biol Chem 36:490–496

    CAS  Google Scholar 

  • Nampoothiri KM, Hoischen C, Bathe B, Möckel B, Pfefferle W, Krumbach K, Sahm H, Eggeling L (2002) Expression of genes of lipid synthesis and altered lipid composition modulates l-glutamate efflux of Corynebacterium glutamicum. Appl Microbiol Biotechnol 58:89–96

    CAS  PubMed  Google Scholar 

  • Niebisch A, Bott M (2001) Molecular analysis of the cytochrome bc 1aa 3 branch of the Corynebacterium glutamicum respiratory chain containing an unusual diheme cytochrome c 1. Arch Microbiol 175:282–294

    CAS  PubMed  Google Scholar 

  • Niebisch A, Kabus A, Schultz C, Weil B, Bott M (2006) Corynebacterial protein kinase G controls 2-oxoglutarate dehydrogenase activity via the phosphorylation status of the OdhI protein. J Biol Chem 281:12300–12307

    CAS  PubMed  Google Scholar 

  • Nunheimer TD, Birnbaum J, Ihnen ED, Demain AL (1970) Product inhibition of the fermentative formation of glutamic acid. Appl Microbiol 20:215–217

    CAS  PubMed  PubMed Central  Google Scholar 

  • Okazaki H, Kanzaki T, Doi M, Sumino Y, Fukuda H (1967) l-Glutamic acid fermentation. Part II. The production of l-glutamic acid by an oleic acid-requiring mutant. Agric Biol Chem 31:1314–1317

    CAS  Google Scholar 

  • Radmacher E, Stansen KC, Besra GS, Alderwick LJ, Maughan WN, Hollweg G, Sahm H, Wendisch VF, Eggeling L (2005) Ethambutol, a cell wall inhibitor of Mycobacterium tuberculosis, elicits l-glutamate efflux of Corynebacterium glutamicum. Microbiology 151:1359–1368

    CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Schäfer A, Tauch A, Jäger W, Kalinowski J, Thierbach G, Pühler A (1994) Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145:69–73

    PubMed  Google Scholar 

  • Shiio I, Ujigawa-Takeda K (1980) Presence and regulation of α-ketoglutarate dehydrogenase complex in a glutamate producing bacterium, Brevibacterium flavum. Agric Biol Chem 44:1897–1904

    CAS  Google Scholar 

  • Shiio I, Otsuka SI, Takahashi M (1962a) Effect of biotin on the bacterial formation of glutamic acid. I. Glutamate formation and cellular permeability of amino acids. J Biochem 51:56–62

    CAS  PubMed  Google Scholar 

  • Shiio I, Otsuka SI, Katsuya N (1962b) Effect of biotin on the bacterial formation of glutamic acid. II. Metabolism of glucose. J Biochem 52:108–116

    CAS  PubMed  Google Scholar 

  • Shimizu H, Tanaka H, Nakato A, Nagahisa K, Kimura E, Shioya S (2003) Effects of the changes in enzyme activities on metabolic flux redistribution around the 2-oxoglutarate branch in glutamate production by Corynebacterium glutamicum. Bioprocess Biosyst Eng 25:291–298

    CAS  PubMed  Google Scholar 

  • Shingu H, Terui G (1971) Studies on the process of glutamic acid fermentation at the enzyme level: I. On the changes of α-ketoglutaric acid dehydrogenase in the course of culture. J Ferment Technol 49:400–405

    CAS  Google Scholar 

  • Shirai T, Nakato A, Izutani N, Nagahisa K, Shioya S, Kimura E, Kawarabayasi Y, Yamagishi A, Gojobori T, Shimizu H (2005) Comparative study of flux redistribution of metabolic pathway in glutamate production by two coryneform bacteria. Metab Eng 7:59–69

    CAS  PubMed  Google Scholar 

  • Takinami K, Yoshii H, Tsuri H, Okada H (1965) Biochemical effects of fatty acid and its derivatives on l-glutamic acid fermentation: III. Biotin–Tween 60 relationship in the accumulation of l-glutamic acid and the growth of Brevibacterium lactofermentum. Agric Biol Chem 29:351–359

    CAS  Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354

    CAS  PubMed  Google Scholar 

  • Usuda Y, Tujimoto N, Abe C, Asakura Y, Kimura E, Kawahara Y, Kurahashi O, Matsui H (1996) Molecular cloning of the Corynebacterium glutamicum (‘Brevibacterium lactofermentum’ AJ12036) odhA gene encoding a novel type of 2-oxoglutarate dehydrogenase. Microbiology 142:3347–3354

    CAS  PubMed  Google Scholar 

  • Uy D, Delaunay S, Goergen JL, Engasser JM (2005) Dynamics of glutamate synthesis and excretion fluxes in batch and continuous cultures of temperature-triggered Corynebacterium glutamicum. Bioprocess Biosyst Eng 27:153–162

    CAS  PubMed  Google Scholar 

  • van der Rest ME, Lange C, Molenaar D (1999) A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogeneic plasmid DNA. Appl Microbiol Biotechnol 52:541–545

    PubMed  Google Scholar 

  • Villarino A, Duran R, Wehenkel A, Fernandez P, England P, Brodin P, Cole ST, Zimny-Arndt U, Jungblut PR, Cervenansky C, Alzari PM (2005) Proteomic identification of M. tuberculosis protein kinase substrates: PknB recruits GarA, a FHA domain-containing protein, through activation loop-mediated interactions. J Mol Biol 350:953–963

    CAS  PubMed  Google Scholar 

  • Wennerhold J, Bott M (2006) The DtxR regulon of Corynebacterium glutamicum. J Bacteriol 188:2907–2918

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wennerhold J, Krug A, Bott M (2005) The AraC-type regulator RipA represses aconitase and other iron proteins from Corynebacterium under iron limitation and is itself repressed by DtxR. J Biol Chem 280:40500–40508

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Bott.

Additional information

Dedicated to Prof. Dr. Hermann Sahm on the occasion of his 65th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schultz, C., Niebisch, A., Gebel, L. et al. Glutamate production by Corynebacterium glutamicum: dependence on the oxoglutarate dehydrogenase inhibitor protein OdhI and protein kinase PknG. Appl Microbiol Biotechnol 76, 691–700 (2007). https://doi.org/10.1007/s00253-007-0933-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-0933-9

Keywords

Navigation