Skip to main content

Advertisement

Log in

Biodegradation of methyl parathion and p-nitrophenol: evidence for the presence of a p-nitrophenol 2-hydroxylase in a Gram-negative Serratia sp. strain DS001

  • Environmental Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A soil bacterium capable of utilizing methyl parathion as sole carbon and energy source was isolated by selective enrichment on minimal medium containing methyl parathion. The strain was identified as belonging to the genus Serratia based on a phylogram constructed using the complete sequence of the 16S rRNA. Serratia sp. strain DS001 utilized methyl parathion, p-nitrophenol, 4-nitrocatechol, and 1,2,4-benzenetriol as sole carbon and energy sources but could not grow using hydroquinone as a source of carbon. p-Nitrophenol and dimethylthiophosphoric acid were found to be the major degradation products of methyl parathion. Growth on p-nitrophenol led to release of stoichiometric amounts of nitrite and to the formation of 4-nitrocatechol and benzenetriol. When these catabolic intermediates of p-nitrophenol were added to resting cells of Serratia sp. strain DS001 oxygen consumption was detected whereas no oxygen consumption was apparent when hydroquinone was added to the resting cells suggesting that it is not part of the p-nitrophenol degradation pathway. Key enzymes involved in degradation of methyl parathion and in conversion of p-nitrophenol to 4-nitrocatechol, namely parathion hydrolase and p-nitrophenol hydroxylase component “A” were detected in the proteomes of the methyl parathion and p-nitrophenol grown cultures, respectively. These studies report for the first time the existence of a p-nitrophenol hydroxylase component “A”, typically found in Gram-positive bacteria, in a Gram-negative strain of the genus Serratia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Barnes H, Folkard AR (1951) The determination of nitrites. Analyst 76:599–603

    CAS  Google Scholar 

  • Benning MM, Kuo JM, Raushel FM, Holden HM (1994) Three-dimensional structure of phosphotriesterase: an enzyme capable of detoxifying organophosphate nerve agents. Biochemistry 33:15001–15007

    CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brown KA (1980) Phosphotriesterases of Flavobacterium sp. Soil Biol Biochem 12:105–112

    CAS  Google Scholar 

  • Cassidy MB, Lee H, Trevors JT, Zablotowicz RB (1999) Chlorophenol and nitrophenol metabolism by Sphingomonas sp. UG 30. J Ind Microbiol Biotechnol 23:232–241

    CAS  PubMed  Google Scholar 

  • Chaudhry GR, Ali AN, Wheeler WB (1988) Isolation of a methyl parathion-degrading Pseudomonas sp. that possesses DNA homologous to the opd gene from a Flavobacterium sp. Appl Environ Microbiol 54:288–293

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chauhan A, Samanta SK, Jain RK (2000) Degradation of 4-nitrocatechol by Burkholderia cepacia: a plasmid-encoded novel pathway. J Appl Microbiol 88:764–772

    CAS  PubMed  Google Scholar 

  • Chen WX, Tan ZY, Gao JL, Li Y, Wang ET (1997) Rhizobium hainanense sp. nov., isolated from tropical legumes. Int J Syst Bacteriol 47:870–873

    CAS  PubMed  Google Scholar 

  • Cho CM, Mulchandani A, Chen W (2004) Altering the substrate specificity of organophosphorus hydrolase for enhanced hydrolysis of chlorpyrifos. Appl Environ Microbiol 70:4681–4685

    CAS  PubMed  PubMed Central  Google Scholar 

  • Daubaras DL, Saido K, Chakrabarty AM (1996) Purification of Hydroxyquinol 1,2-dioxygenase and Maleylacetate reductase: the lower pathway of 2,4,5-trichlorophenoxyacetic acid metabolism by Burkholderia cepacia AC1100. Appl Environ Microbiol 62:4276–4279

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duffes F, Jenoe P, Boyaval P (2000) Use of two-dimensional electrophoresis to study differential protein expression in divercin V41-resistant and wild-type strains of Listeria monocytogenes. Appl Environ Microbiol 66:4318–4324

    CAS  PubMed  PubMed Central  Google Scholar 

  • Errampalli D, Tresse O, Lee H, Trevors JT (1999) Bacterial survival and mineralization of p-nitrophenol in soil by green fluorescent protein-marked Moraxella sp. G21 encapsulated cells. FEMS Microbiol Ecol 30:229–236

    CAS  PubMed  Google Scholar 

  • Harper LL, Mcdaniel CS, Miller CE, Wild JR (1988) Dissimilar plasmids isolated from Pseudomonas diminuta MG and a Flavobacterium sp. (ATCC 27551) contain identical opd genes. Appl Environ Microbiol 54:2586–2589

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hayatsu M, Hirano M, Tokuda S (2000) Involvement of two plasmids in Fenitrothion degradation by Burkholderia sp. strain NF100. Appl Environ Microbiol 66:1737–1740

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jain RK, Dreisbach JH, Spain JC (1994) Biodegradation of p-nitrophenol via 1,2,4-benzenetriol by an Arthrobacter sp. Appl Environ Microbiol 60:3030–3032

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kadiyala V, Spain JC (1998) A two-component monooxygenase catalyzes both the hydroxylation of p-nitrophenol and the oxidative release of nitrite from 4-nitrocatechol in Bacillus sphaericus JS905. Appl Environ Microbiol 64:2479–2484

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kitagawa W, Kimura N, Kamagata Y (2004) A novel p-nitrophenol degradation gene cluster from a gram-positive bacterium, Rhodococcus opacus SAO101. J Bacteriol 186:4894–4902

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leung KT, Tresse O, Errampalli D, Lee H, Trevors JT (1997) Mineralization of p-nitrophenol by pentachlorophenol-degrading Sphingomonas spp. FEMS Microbiol Lett 155:107–114

    CAS  Google Scholar 

  • Leung KT, Campbell S, Gan Y, White DC, Lee H, Trevors JT (1999) The role of the Sphingomonas species UG 30 pentachlorophenol-4-monooxygenase in p-nitrophenol degradation. FEMS Microbiol Lett 173:247–253

    CAS  PubMed  Google Scholar 

  • Liu H, Zhang J, Wang S, Zhang X, Zhou N (2005) Plasmid-borne catabolism of methylparathion and p-nitrophenol in Pseudomonas sp. strain WBC-3. Biochem Biophys Res Commun 334:1107–1114

    CAS  PubMed  Google Scholar 

  • Loper JC (1968) Histidinol dehydrogenase from Salmonella typhimurium. Crystallization and composition studies. J Biol Chem 243:3264–3272

    CAS  PubMed  Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Mcdaniel CS, Harper LL, Wild JR (1988) Cloning and sequencing of a plasmid-borne gene (opd) encoding a phosphotriesterase. J Bacteriol 170:2306–2311

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mitra D, Vaidyanathan CS (1984) A new 4-nitrophenol 2-hydroxylase from a Nocardia sp. Biochem Int 8:609–615

    CAS  PubMed  Google Scholar 

  • Mulbry WW, Karns JS (1989) Purification of three parathion hydrolases from gram-negative bacterial strains. Appl Environ Microbiol 55:289–293

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mulbry WW, Karns JS, Kearney PC, Nelson JO, Mcdaniel CS, Wild JR (1986) Identification of a plasmid-borne parathion hydrolase gene from Flavobacterium sp. by southern hybridization with opd from Pseudomonas diminuta. Appl Environ Microbiol 51:926–930

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muller DM, Schlomann M, Reineke W (1996) Maleylacetate reductases in chloroaromatic-degrading bacteria using the modified ortho pathway: comparison of catalytic properties. J Bacteriol 178:298–300

    CAS  PubMed  PubMed Central  Google Scholar 

  • Munnecke DM, Hsieh DP (1976) Pathways of microbial metabolism of parathion. Appl Environ Microbiol 31:63–69

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murray KC, Duggleby J, Sala-Trepat JM, Williams PA (1972) The metabolism of benzoate and methylbenzoates via the meta-cleavage pathway by Pseudomonas arvilla mt-2. Eur J Biochem 28:301–310

    CAS  PubMed  Google Scholar 

  • Prakash D, Chauhan A, Jain RK (1996) Plasmid-encoded degradation of p-nitrophenol by Pseudomonas cepacia. Biochem Biophys Res Commun 224:375–381

    CAS  PubMed  Google Scholar 

  • Ramanathan MP, Lalithakumari D (1999) Complete mineralization of methylparathion by Pseudomonas sp. A3. Appl Biochem Biotechnol 80:1–12

    CAS  PubMed  Google Scholar 

  • Rani NL, Lalithakumari D (1994) Degradation of methyl parathion by Pseudomonas putida. Can J Microbiol 40:1000–1006

    CAS  PubMed  Google Scholar 

  • Roldan MD, Blasco R, Caballero FJ, Castillo F (1998) Degradation of p-nitrophenol by the phototrophic bacterium Rhodobacter capsulatus. Arch Microbiol 169:36–42

    CAS  PubMed  Google Scholar 

  • Serdar CM, Murdock DC, Rohde MF (1989) Parathion hydrolase gene from Pseudomonas diminuta MG: subcloning, complete nucleotide sequence, and expression of the mature portion of the enzyme in Escherichia coli. Biotechnology 7:1151–1155

    CAS  Google Scholar 

  • Siddaramappa R, Rajaram KP, Sethunathan N (1973) Degradation of parathion by bacteria isolated from flooded soil. Appl Microbiol 26:846–849

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh BK, Walker A (2006) Microbial degradation of organophosphorus compounds. FEMS Microbiol Rev 30:428–471

    CAS  PubMed  Google Scholar 

  • Somara S, Siddavattam D (1995) Plasmid mediated organophosphate pesticide degradation by Flavobacterium balustinum. Biochem Mol Biol Int 36:627–631

    CAS  PubMed  Google Scholar 

  • Spain JC, Gibson DT (1991) Pathway for biodegradation of p-nitrophenol in a Moraxella sp. Appl Environ Microbiol 57:812–819

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takeo M, Yasukawa T, Abe Y, Nihara S, Marda Y, Negoro S (2003) Cloning and characterization of a 4-nitrophenol hydroxylase gene cluster from Rhodococcus sp. PN1. J Biosci Bioeng 95:139–145

    CAS  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Google Scholar 

  • Weigent DA, Nester EW (1976) Purification and properties of two aromatic aminotransferases in Bacillus subtilis. J Biol Chem 251:6974–6980

    CAS  PubMed  Google Scholar 

  • Zhang R, Cui Z, Jaindong J, Jain H, Xiangyang G, Sphunpeng L (2005) Diversity of organophosphorus pesticide degrading bacteria in a polluted soil and conservation of their organophosphorus hydrolase genes. Can J Microbiol 51:337–343

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Reddanna for providing GCMS facility and the University Grants Commission, New Delhi and the Department of Science and Technology, New Delhi for providing financial support to carry out the research work. ABP is a recipient of Junior Research Fellowship from UGC, New Delhi. DS is also a recipient of financial support from Institute of Life Sciences. MM is supported by the Biotechnology and Biological Sciences Research Council, UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dayananda Siddavattam.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

Fig. 1

Mass spectrum identifying p-nitrophenol, a degradation product of methyl parathion (DOC 48 640 KB)

Fig. 2

Mass spectrum identifying dimethyl thiophosphoric acid, a degradation product of methyl parathion (DOC 43 520 KB)

Fig. 3

Mass spectrum identifying 4-nitrocatechol, a key intermediate in degradation of PNP (DOC 60 928 KB)

Fig. 4

Mass spectrum identifying 1,2,4-benzenetriol, a key intermediate in degradation of PNP (DOC 97 280 KB)

Fig. 5

2D analysis of the proteome of Serratia sp. strain DS001 cells grown in a glucose, b methylparathion, and cp-nitrophenol (DOC 882 688 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pakala, S.B., Gorla, P., Pinjari, A.B. et al. Biodegradation of methyl parathion and p-nitrophenol: evidence for the presence of a p-nitrophenol 2-hydroxylase in a Gram-negative Serratia sp. strain DS001. Appl Microbiol Biotechnol 73, 1452–1462 (2007). https://doi.org/10.1007/s00253-006-0595-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-006-0595-z

Keywords

Navigation