Skip to main content
Log in

High-level expression and bulk crystallization of recombinant l-methionine γ-lyase, an anticancer agent

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

l-Methionine γ-lyase is a pyridoxal 5′-phosphate-dependent enzyme which has tumor selective anticancer activity. An efficient production process for the recombinant enzyme was constructed by using the overexpression plasmid in Escherichia coli, large-scale cultivation, and practical crystallization on an industrial scale. The plasmid was optimized with a promoter and the region of the ribosome-binding site. Plasmid pMGLTrc03, which has a trc promoter and a spacing of 12 nucleotides between the Shine-Dalgarno sequence and the ATG translation initiation codon, was selected as the most suitable plasmid. The transformants produced the enzyme, which intracellularly accumulated at 2.1 mg/ml as an active form and accounted for 43% of the total proteins in the soluble fraction by simple batch fermentation using a 500-l fermentor. The crystals were directly obtained from crude enzyme with 87% yield by a crystallization in the presence of 9.0% polyethylene glycol 6000, 3.6% ammonium sulfate, and 0.18 M sodium chloride using a 100-l crystallizer. After recrystallization, the enzyme was purified by anion-exchange column chromatography to remove endotoxins and by gel filtration for polishing. We prepared 600 g of purified enzyme with a low endotoxin content of sufficient quality for therapeutical use, with a 41% overall yield in the purification process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Cellarier E, Durando X, Vasson MP, Farges MC, Demiden A, Maurizis JC, Madelmont JC, Chollet P (2003) Methionine dependency and cancer treatment. Cancer Treat Rev 29:489–499

    Article  CAS  Google Scholar 

  • Dalboge H, Carlsen S, Jensen EB, Christensen T, Dahl HH (1988) Expression of recombinant growth hormone in Escherichia coli: effect of the region between the Shine-Dalgarno sequence and the ATG initiation codon. DNA 7:399–405

    Article  CAS  Google Scholar 

  • Esaki N, Soda K (1987) l-Methionine γ-lyase from Pseudomonas putida and Aeromonas. Methods Enzymol 143:459–465

    Article  CAS  Google Scholar 

  • Giege R, Dock AC, Kern D, Lorber B, Thierry JC, Moras D (1986) The role of purification in the crystallization of proteins and nucleic acids. J Cryst Growth 76:544–561

    Article  Google Scholar 

  • Guo H, Herrera H, Groce A, Hoffman RM (1993a) Expression of the biochemical defect of methionine dependence in fresh patient tumors in primary histoculture. Cancer Res 53:2479–2483

    CAS  PubMed  Google Scholar 

  • Guo H, Lishko VK, Herrera H, Groce A, Kubota T, Hoffman RM (1993b) Therapeutic tumor-specific cell cycle block induced by methionine starvation in vivo. Cancer Res 53:5676–5679

    CAS  PubMed  Google Scholar 

  • Hall MN, Gabay J, Debarbouille M, Schwartz M (1982) A role for mRNA secondary structure in the control of translation initiation. Nature 295:616–618

    Article  CAS  Google Scholar 

  • Hoffman RM (1984) Altered methionine metabolism, DNA methylation, and oncogene expression in carcinogenesis: a review and synthesis. Biochim Biophys Acta 738:49–87

    CAS  PubMed  Google Scholar 

  • Hoffman RM, Erbe RW (1976) High in vivo rates of methionine biosynthesis in transformed human and malignant rat cells auxotrophic for methionine. Proc Natl Acad Sci U S A 73:1523–1527

    Article  CAS  Google Scholar 

  • Hoffman RM, Jacobsen SJ (1980) Reversible growth arrest in simian virus 40-transformed human fibroblasts. Proc Natl Acad Sci U S A 77:7306–7310

    Article  CAS  Google Scholar 

  • Hou KC, Zaniewski R (1990) Endotoxin removal by anion-exchange polymeric matrix. Biotechnol Appl Biochem 12:315–324

    CAS  PubMed  Google Scholar 

  • Inoue H, Inagaki K, Sugimoto M, Esaki N, Soda K, Tanaka H (1995) Structural analysis of the l-methionine γ-lyase gene from Pseudomonas putida. J Biochem 117:1120–1125

    Article  CAS  Google Scholar 

  • Inoue H, Inagaki K, Adachi N, Tamura T, Esaki N, Soda K, Tanaka H (2000) Role of tyrosine 114 of l-methionine γ-lyase from Pseudomonas putida. Biosci Biotechnol Biochem 64:2336–2343

    Article  CAS  Google Scholar 

  • Jacobsen C, Garside J, Hoare M (1998) Nucleation and growth of microbial lipase crystals from clarified concentrated fermentation broths. Biotechnol Bioeng 57:666–675

    Article  CAS  Google Scholar 

  • Judge RA, Forsythe EL, Pusey ML (1998) The effect of protein impurities on lysozyme crystal growth. Biotechnol Bioeng 59:776–785

    Article  CAS  Google Scholar 

  • Kokkinakis DM, Von Wronski MA, Vuong TH, Brent TP, Schold Jr SC (1997) Regulation of O6 methylguanine DNA methyltransferase by methionine in human tumor cells. Br J Cancer 75:779–788

    Article  CAS  Google Scholar 

  • Kreis W, Goodenow M (1978) Methionine requirement and replacement by homocysteine in tissue cultures of selected rodent and human malignant and normal cells. Cancer Res 38:2259–2262

    CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  • Lee TS, Vaghjiani JD, Lye GJ, Turner MK (2000) A systematic approach to the large-scale production of protein crystals. Enzyme Microb Technol 26:582–592

    Article  CAS  Google Scholar 

  • Margolin AL (1996) Novel crystalline catalysts. Trends Biotechnol 14:223–230

    Article  CAS  Google Scholar 

  • Marquis DM, Smolec JM, Katz DH (1986) Use of a portable ribosome-binding site for maximizing expression of a eukaryotic gene in Escherichia coli. Gene 42:175–183

    Article  CAS  Google Scholar 

  • McPherson A (1990) Current approaches to macromolecular crystallization. Eur J Biochem 189:1–23

    Article  CAS  Google Scholar 

  • Mitsuda Y, Takimoto A, Kamitani S, Kitamura K, Sakata T, Mitsushima K (2002) Large-scale production of functional human adrenomedullin: expression, cleavage, amidation, and purification. Protein Expr Purif 25:448–455

    Article  CAS  Google Scholar 

  • Motoshima H, Inagaki K, Kumasaka T, Furuichi M, Inoue H, Tamura T, Esaki N, Soda K, Tanaka N, Yamamoto M, Tanaka H (2000) Crystal structure of the pyridoxal 5′-phosphate dependent l-methionine γ-lyase from Pseudomonas putida. J Biochem 128:349–354

    Article  CAS  Google Scholar 

  • Sato N, Hayami T, Murata K, Watanabe K, Kariya Y, Sakaguchi M, Kimura S, Nonaka M, Kimura A (1989) Expression of tuna growth hormone cDNA in Escherichia coli. Appl Microbiol Biotechnol 30:153–159

    Article  CAS  Google Scholar 

  • Sazaki G, Yoshida E, Komatsu H, Nakada T, Miyashita S, Watanabe K (1997) Effects of a magnetic field on the nucleation and growth of protein crystals. J Cryst Growth 173:231–234

    Article  CAS  Google Scholar 

  • Takakura T, Mitsushima K, Yagi S, Inagaki K, Tanaka H, Esaki N, Soda K, Takimoto A (2004) Assay method for antitumor l-methionine γ-lyase: comprehensive kinetic analysis of the complex reaction with l-methionine. Anal Biochem 327:233–240

    Article  CAS  Google Scholar 

  • Takimoto A, Yagi S, Mitsushima K (1999) High-level expression, purification, and some properties of a recombinant cephalosporin-C deacetylase. J Biosci Bioeng 87:456–462

    Article  CAS  Google Scholar 

  • Takimoto A, Takakura T, Tani H, Yagi S, Mitsushima K (2004) Batch production of deacetyl 7-aminocephalosporanic acid by immobilized cephalosporin-C deacetylase. Appl Microbiol Biotechnol 65:263–267

    Article  CAS  Google Scholar 

  • Tan Y, Zavala JS, Xu M, Zavala JJ, Hoffman RM (1996) Serum methionine depletion without side effects by methioninase in metastatic breast cancer patients. Anticancer Res 16:3937–3942

    CAS  PubMed  Google Scholar 

  • Tan Y, Zavala JS, Han Q, Xu M, Sun X, Tan X, Tan X, Magana R, Geller J, Hoffman RM (1997a) Recombinant methioninase infusion reduces the biochemical endpoint of serum methionine with minimal toxicity in high-stage cancer patients. Anticancer Res 17:3857–3860

    CAS  PubMed  Google Scholar 

  • Tan Y, Xu M, Tan X, Tan X, Wang X, Saikawa Y, Nagahama T, Sun X, Lenx M, Hoffman RM (1997b) Overexpression and large-scale production of recombinant l-methionine-α-deamino-γ-mercaptomethane-lyase for novel anticancer therapy. Protein Expr Purif 9:233–245

    Article  CAS  Google Scholar 

  • Tanaka H, Esaki N, Soda K (1977) Properties of l-methionine γ-lyase from Pseudomonas ovalis. Biochemistry 16:100–106

    Article  CAS  Google Scholar 

  • Tanaka H, Esaki N, Soda K (1985) A versatile bacterial enzyme: l-methionine γ-lyase. Enzyme Microb Technol 7:530–537

    Article  CAS  Google Scholar 

  • Visuri K, Kaipainen E, Kivimaki J, Niemi H, Leisola M, Palosaari S (1990) A new method for protein crystallization using high pressure. Biotechnology (N.Y.) 8:547–549

    CAS  Google Scholar 

  • Wakayama NI (2003) Effects of a strong magnetic field on protein crystals growth. Cryst Growth Des 3:17–24

    Article  CAS  Google Scholar 

  • Watanabe N, Kamei S, Ohkubo A, Yamanaka M, Ohsawa S, Makino K, Tokuda K (1986) Urinary protein as measured with a pyrogallol red-molybdate complex, manually and in a Hitachi 726 automated analyzer. Clin Chem 32:1551–1554

    Article  CAS  Google Scholar 

  • Yang MX, Shenoy B, Disttler M, Patel R, McGrath M, Pechenov S, Margolin AL (2003) Crystalline monoclonal antibodies for subcutaneous delivery. Proc Natl Acad Sci U S A 100:6934–6939

    Article  CAS  Google Scholar 

  • Yoshioka T, Wada T, Uchida N, Maki H, Yoshida H, Ide N, Kasai H, Hojo K, Shono K, Maekawa R, Yagi S, Hoffman RM, Sugita K (1998) Anticancer efficacy in vivo and in vitro, synergy with 5-fluorouracil, and safety of recombinant methioninase. Cancer Res 58:2583–2587

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Mr. Kensaku Akita for his helpful suggestions. We are also grateful to our colleagues at the Discovery Research Laboratories and the Manufacturing Technology R & D Laboratories of Shionogi & Co., Ltd. for their warm support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoaki Takakura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takakura, T., Ito, T., Yagi, S. et al. High-level expression and bulk crystallization of recombinant l-methionine γ-lyase, an anticancer agent. Appl Microbiol Biotechnol 70, 183–192 (2006). https://doi.org/10.1007/s00253-005-0038-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-005-0038-2

Keywords

Navigation