Skip to main content

Advertisement

Log in

Influenza vaccines: recent advances in production technologies

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In spite of ongoing annual vaccination programs, the seasonal influenza epidemics remain a major cause of high morbidity and mortality. The currently used “inactivated” vaccines provide very short-term and highly specific humoral immunity due to the frequent antigenic variations in the influenza virion. These intra-muscularly administered vaccines also fail to induce protective mucosal immunity at the portal of viral entry and destruction of the virally infected cells by induction of cytotoxic T lymphocytes. Therefore, it is necessary to develop immunologically superior vaccines. This article highlights some of the recent developments in investigational influenza vaccines. The most notable recent developments of interest include the use of immunopotentiators, development of DNA vaccines, use of reverse genetics, and the feasibility of mammalian cell-based production processes. Presently, due to their safety and efficacy, the cold-adapted “live attenuated” vaccines are seen as viable alternatives to the “inactivated vaccines”. The DNA vaccines are gaining importance due to the induction of broad-spectrum immunity. In addition, recent advances in recombinant technologies have shown the possibility of constructing pre-made libraries of vaccine strains, so that adequately preparations can be made for epidemics and pandemics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Babai I, Barenholz Y, Zakay-Rones Z, Greenbaum E, Samira S, Hayon I, Rochman M, Kedar E (2001) A novel liposomal influenza vaccine (INFLUSOME-VAC) containing hemagglutinin-neuraminidase and IL-2 or GM-CSF induces protective anti-neuraminidase antibodies cross-reacting with a wide spectrum of influenza A viral strains. Vaccine 20:505–515

    Google Scholar 

  • Belshe RB (2004) Current status of live attenuated influenza virus vaccine in the US. Virus Res 103:177–185

    Google Scholar 

  • Bowersock TL, Martin S (1999) Vaccine delivery to animals. Adv Drug Deliv Rev 38:167–194

    Google Scholar 

  • Caton A, Brownlee G, Yewdell J, Gerhard W (1982) The antigenic structure of the influenza virus A/PR/8/34 hemagglutinin (H1 subtype). Cell 31:417–427

    Google Scholar 

  • Clements ML, Snyder MH, Buckler-White AJ, Tierney EL, London WT, Murphy BR (1986) Evaluation of avian-human reassortant influenza A/Washington/897/80 x A/Pintail/119/79 virus in monkeys and adult volunteers. J Clin Microbiol 24:47–51

    Google Scholar 

  • Donnelly JJ, Friedman A, Ulmer J, Liu MA (1997) Further protection against antigenic drift of influenza virus in a ferret model by DNA vaccination. Vaccine 15:865–868

    Google Scholar 

  • Gerdil C (2003) The annual production cycle for influenza vaccine. Vaccine 21:1776–1779

    Google Scholar 

  • Hannoun C, Megas F, Piercy J (2004) Immunogenicity and protective efficacy of influenza vaccination. Virus Res 103:133–138

    Google Scholar 

  • Herzog C, Metcalfe IC, Schaad UB (2002) Virosome influenza vaccine in children. Vaccine 20:B24–B28

    Google Scholar 

  • Hilleman MR (2002) Realities and enigmas of human viral influenza: pathogenesis, epidemiology and control. Vaccine 20:3068–3087

    Google Scholar 

  • Hoffmann E, Neumann G, Hobom G, Webster RG, Kawaoka Y (2000) “Ambisense” approach for the generation of influenza A viruses: vRNA and mRNA synthesis from one template. Virology 267:310–317

    Google Scholar 

  • Hoffmann E, Krauss S, Perez D, Webby R, Webster RG (2002) Eight-plasmid system for rapid generation of influenza virus vaccines. Vaccine 20:3165–3170

    Google Scholar 

  • Horimoto T, Horimoto KI, Hatta M, Kawaoka Y (2004) Influenza A viruses possessing type B hemagglutinin and neuraminidase: potential as vaccine components. Microbes Infect 6:579–583

    Google Scholar 

  • Jin H, Lu B, Zhou H, Ma C, Zhao J, Yang CF, Kemble G, Greenberg H (2003) Multiple amino acid residues confer temperature sensitivity to human influenza virus vaccine strains (FluMist) derived from cold-adapted A/Ann Arbor/6/60. Virology 306:18–24

    Google Scholar 

  • Joseph A, Louria-Hayon I, Plis-Finarov A, Zeira E, Zakay-Rones Z, Raz E, Hayashi T, Takabayashi K, Barenholz Y, Kedar E (2002) Liposomal immunostimulatory DNA sequence (ISS-ODN): an effective parenteral and mucosal adjuvant for influenza and hepatitis B vaccines. Vaccine 20:3342–3354

    Google Scholar 

  • Justewicz DM, Morin MJ, Robinson HL, Webster RG (1995) Antibody-forming cell response to virus challenge in mice immunized with DNA encoding the influenza virus hemagglutinin. J Virol 69:7712–7717

    Google Scholar 

  • Kemble G, Greenberg H (2003) Novel generations of influenza vaccines. Vaccine 21:1789–1795

    Google Scholar 

  • Kendal AP (1997) Cold-adapted live attenuated influenza vaccines developed in Russia: can they contribute to meeting the needs for influenza control in other countries? Eur J Epidemiol 13:591–609

    Google Scholar 

  • Kistner O, Barrett PN, Mundt W, Reiter M, Schober-Bendixen S, Dorner F (1998) Development of a novel mammalian cell (Vero)-derived influenza vaccine. Vaccine 16:960–968

    Google Scholar 

  • Li SQ, Liu CG, Klimov A, Subbarao K, Perdue ML, Mo D, Ji Y, Woods L, Hietala S, Bryant M (1999) Recombinant influenza A virus vaccines for the pathogenic human A Hong Kong 97 (H5N1) viruses. J Infect Dis 179:1132–1138

    Google Scholar 

  • Ljungberg K, Wahren B, Almqvist J, Hinkula J, Linde A, Winberg G (2000) Effective construction of DNA vaccines against variable influenza genes by homologous recombination. Virology 268:244–250

    Google Scholar 

  • Maassab HF, DeBorde DC (1985) Development and characterization of cold-adapted viruses for use as live vaccines. Vaccine 3:335–369

    Google Scholar 

  • Morein B, Sundquist B, Hoglund S, Dalsgaard K, Osterhaus A (1984) ISCOM, a novel structure for antigen presentation of membrane proteins of enveloped viruses. Nature 308:457–460

    Google Scholar 

  • Murphy BR, Chalhub EG, Nusinoff SR, Chanock RM (1972) Temperature-sensitive mutants of influenza virus. II Attenuation of ts recombinants for man. J Infect Dis 126:170–178

    Google Scholar 

  • Nagai T, Suzuki Y, Kiyohara H, Susa E, Kato T, Nagamine T, Hagiwara Y, T SI, Yabe T, Aizawa C, Yamada H (2001) Onjisaponins, from the root of Polygala tenuifolia Willdenow, as effective adjuvants for nasal influenza and diphtheria-pertussis-tetanus vaccines. Vaccine 19:4824–4834

    Google Scholar 

  • Neirynck S, Deroo T, Saelens X, Vanlandschoot P, Min Jou W, Fiers W (1999) A universal influenza A vaccine based on the extra cellular domain of the M2 protein. Nat Med 5:1157–1163

    Google Scholar 

  • Neumann G, Zobel A, Hobom G (1994) RNA polymerase I-mediated expression of influenza viral RNA molecules. Virology 202:447–449

    Google Scholar 

  • Neumann G, Watanabe T, Ito H, Watanabe S, Goto H, Gao P, Hughes M, Perez DR, Donis R, Hoffmann E, Hobom G, Kawaoka Y (1999) Generation of influenza A viruses entirely from cloned cDNAs. Proc Natl Acad Sci USA 96:9345–9350

    Google Scholar 

  • Nicholson KG, Wood JM, Zambon M (2003) Influenza. Lancet 362:1733–1745

    Google Scholar 

  • Okuda K, Ihata A, Watabe S, Okada E, Yamakawa T, Hamasima K, Yang J, Ishii N, Nakazawa M, Okuda K, Ohnari K, Nakajima K, Xin KQ (2001) Protective immunity against influenza A virus induced by immunization with DNA plasmid containing influenza M gene. Vaccine 19:3681–3691

    Google Scholar 

  • Palese P, Zavala F, Muster T, Nussenzweig RS, Garcia-Sastre A (1997) Development of novel influenza virus vaccines and vectors. J Infect Dis 176:S45–S49

    Google Scholar 

  • Pau MG, Ophorst C, Koldijk MH, Schouten G, Mehtali M, Uytdehaag F (2001) The human cell line PER.C6 provides a new manufacturing system for the production of influenza vaccines. Vaccine 19:2716–2721

    Google Scholar 

  • Pfleiderer M, Löwer J, Kurth R (2002) Cold-attenuated live influenza vaccines, a risk-benefit assessment. Vaccine 20:886–894

    Google Scholar 

  • Plante M, Jones T, Allard F, Torossian K, Gauthier J, St-Félix N, White GL, Lowell GH, Burt DS (2001) Nasal immunization with subunit proteosome influenza vaccines induces serum HAI, mucosal IgA, and protection against influenza challenge. Vaccine 20:218–225

    Google Scholar 

  • Podda A (2001) The adjuvanted influenza vaccines with novel adjuvants: experience with the MF59-adjuvanted vaccine. Vaccine 19:2673–2680

    Google Scholar 

  • Ramanathan RK, Potter DM, Belani CP, Jacobs SA, Gravenstein S, Lim F, Kim H, Savona S, Evans T, Buchbarker D, Simon MB, Depee JK, Trump DL (2002) Randomized trial of influenza vaccine with granulocyte-macrophage colony-stimulating factor or placebo in cancer patients. J Clin Oncol 20:4313–4318

    Google Scholar 

  • Rimmelzwaan GF, Osterhaus ADME (2001) Influenza vaccines: new developments. Curr Opin Pharmacol 1:491–496

    Google Scholar 

  • Rimmelzwaan GF, Baars M, van Amerongen G, van Beek R, Osterhaus ADME (2001) A single dose of an ISCOM influenza vaccine induces long-lasting protective immunity against homologous challenge infection but fails to protect Cynomolgus macaques against distant drift variants of influenza A (H3N2) viruses. Vaccine 20:158–163

    Google Scholar 

  • Robinson HL, Hunt LA, Webster RG (1993) Protection against a lethal influenza virus challenge by immunization with a hemagglutinin-expressing plasmid DNA. Vaccine 11:957–960

    Google Scholar 

  • Seo SH, Goloubeva O, Webby R, Webster RG (2001) Characterization of a porcine lung epithelial cell line suitable for influenza virus studies. J Virol 75:9517–9525

    Google Scholar 

  • Slepushkin VA, Katz JM, Black RA, Gamble WC, Roata PA, Cox NJ (1995) Protection of mice against influenza A virus challenge by vaccination with baculovirus-expressed M2 protein. Vaccine 13:1399–1402

    Google Scholar 

  • Tree JA, Richardson C, Fooks AR, Clegg JC, Looby D (2001) Comparison of large-scale mammalian cell culture systems with egg culture for the production of influenza virus a vaccine strains. Vaccine 19:3444–3450

    Google Scholar 

  • Ulmer JB (2002) Influenza DNA vaccines. Vaccine 20:S74–S76

    Google Scholar 

  • Wareing MD, Tannock GA (2001) Live attenuated vaccines against influenza: an historical review. Vaccine 19:3320–3330

    Google Scholar 

  • Watanabe T, Watanabe S, Kida H, Kawaoka Y (2002a) Influenza A virus with defective M2 ion channel activity as a live vaccine. Virology 299:266–270

    Google Scholar 

  • Watanabe T, Watanabe S, Neumann G, Kida H, Kawaoka Y (2002b) Immunogenicity and protective efficacy of replication-incompetent influenza virus-like particles. J Virol 76:767–773

    Google Scholar 

  • Wolff JA, Malone RW, Williams P, Chong W, Ascadi G, Jani A, Felgner PL (1990) Direct gene transfer into mouse skeleton muscle in vivo. Science 247:1465–1468

    Google Scholar 

  • Youil R, Su Q, Toner TJ, Szymkowiak C, Kwan WS, Rubin B, Petrukhin L, Kiseleva I, Shaw AR, DiStefano D (2004) Comparative study of influenza virus replication in Vero and MDCK cell lines. J Virol Methods 120:23–31

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. H. Bae.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bardiya, N., Bae, J.H. Influenza vaccines: recent advances in production technologies. Appl Microbiol Biotechnol 67, 299–305 (2005). https://doi.org/10.1007/s00253-004-1874-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-004-1874-1

Keywords

Navigation