Skip to main content
Log in

Improving the insecticidal activity of Bacillus thuringiensis subsp. aizawai against Spodoptera exigua by chromosomal expression of a chitinase gene

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A transcriptionally fused gene comprising the P19 gene from Bacillus thuringiensis subsp. israelensis fused with a chitinase gene (chiBlA) from B. licheniformis was integrated into the B. thuringiensis subsp. aizawai BTA1 genome by homologous recombination. The resulting B. thuringiensis subsp. aizawai strain (INT1) showed growth and sporulation comparable with that of the wild-type strain. INT1 produced four chitinases of different molecular masses (i.e., 66, 55, 39, 36 kDa). Three of these (66, 55, 36 kDa) were derived from the cloned chiBlA gene, whereas the 39-kDa chitinase originated from BTA1. Using surface contamination bioassays, the 50% lethal concentration of lyophilized whole culture broth of INT1 against Spodoptera exigua neonate larvae was 12.2 μg/cm2, compared with 30.8 μg/cm2 for BTA1. Bioassays using filtered culture supernatant of INT1 (110 μg/cm2) together with trypsin-activated purified Cry1C protein of B. thuringiensis (1,280 ng/cm2) showed 75.0% mortality, compared with 56.7% mortality for Cry1C combined with BTA1 at the same concentration. Using scanning electron microscopy, clear perforations were observed in S. exigua fifth instar peritrophic membranes incubated with either crude or purified chitinase, or isolated from fifth instar S. exigua fed purified chitinase since the first instar. These results show that chitinase can increase the activity of B. thuringiensis subsp. aizawai against S. exigua. This is the first documentation of expressing a chimeric chitinase gene on the chromosome of B. thuringiensis; and chromosomal integration might be used as a potential technique for strain improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 a–c
Fig. 2
Fig. 3 a,b
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aquino de Muro M, Priest FG (2000) Construction of chromosomal integrants of Bacillus sphaericus 2362 by conjugation with Escherichia coli. Res Microbiol 151:547–555

    Article  PubMed  Google Scholar 

  • Arantes O, Lereclus D (1991) Construction of cloning vectors for Bacillus thuringiensis. Gene 108:115–119

    CAS  PubMed  Google Scholar 

  • Baum JA, Malvar T (1995) Regulation of insecticidal crystal protein production in Bacillus thuringiensis. Mol Microbiol 18:1–12

    Article  CAS  PubMed  Google Scholar 

  • Chalfant RB (1975) A simplified technique for rearing the lesser cornstalk borer (Lepidiptera: Phyciditae). J Ga Entomol Soc 10:32–33

    Google Scholar 

  • Crickmore N, Nicholls C, Earp DJ, Hodgman TC, Ellar DJ (1990) The construction of Bacillus thuringiensis stains expressing novel entomocidal δ-endotoxin combinations. Biochem J 270:133–136

    CAS  PubMed  Google Scholar 

  • Dubois NR, Hamden CT, Gunner HB, Daoust D (1978) Effect of chitinase on the peritrophic membrane of Lymantria dispar L (Lepidoptera: Lymantriidae) larvae. J NY Entomol Soc 36:285

    Google Scholar 

  • Finney DJ (1952) Probit analysis. Cambridge University, Cambridge, pp 20–49

  • Granados RR, Fu Y, Corsaro B, Hughes PR (2001) Enhancement of Bacillus thuringiensis toxicity to lepidopterous species with the enhancin from Trichoplusia ni granulovirus. Biol Control 20:153–159

    CAS  Google Scholar 

  • Hansen BM, Salamitou S (2000) Virulence of Bacillus thuringiensis. In: Charles JF, Delecluse A, Roux CN (eds) Entomopathogenic bacteria: from laboratory to field application. Kluwer, Dordrecht, pp 41–64

  • Hirata H, Fukazawa T, Negoro S, Okada H (1986) Structure of a beta-galactosidase gene of Bacillus stearothermophilus. J Bacteriol 166:722–727

    CAS  PubMed  Google Scholar 

  • Honee G, Visser B (1993) The mode of action of Bacillus thuringiensis crystal proteins. Entomol Exp Appl 69:145–155

    CAS  Google Scholar 

  • Huber M, Cabib E, Miller LH (1991) Malaria parasite chitinase and penetration of the mosquito peritrophic membrane. Proc Natl Acad Sci USA 88:2807–2810

    CAS  PubMed  Google Scholar 

  • Kramer KJ, Muthukrishnan S, Jonhson L, White F (1997) Chitinases for insect control. In: Carozzi N, Kozid M (eds) Advances in insect control: the role of transgenic plants. Taylor & Francis, Bristol, pp 185–193

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    PubMed  Google Scholar 

  • Lecadet MM, Chaufaux J, Ribier J, Lereclus D (1990) Construction of novel Bacillus thuringiensis strains with different insecticidal activities by transduction and transformation. Appl Environ Microbiol 58:840–849

    Google Scholar 

  • Lehane MJ (1997) Peritrophic matrix structure and function. Annu Rev Entomol 42:525–550

    Google Scholar 

  • Lereclus D, Vallade M, Chaufaux J, Arantes O, Rambaud S (1992) Expansion of insecticidal host range of Bacillus thuringiensis by in vivo genetic recombination. Bio/Technology 10:418–421

    Google Scholar 

  • Liu M, Cai QX, Liu HZ, Zhang BH, Yan JP, Yuan ZM (2002) Chitinolytic activities in Bacillus thuringiensis and their synergism effects on larvicidal activity. J Appl Microbiol 93:374–379

    Article  CAS  PubMed  Google Scholar 

  • Lysenko O (1976) Chitinase of Serratia marcescens and its toxicity to insects. J Invertebr Pathol 27:385–386

    CAS  Google Scholar 

  • Matsudaira P (1987) Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J Biochem 262:10035–10038

    CAS  Google Scholar 

  • Matsuno Y, Ano T, Shoda M (1992) High-efficiency transformation of Bacillus subtilis NB 22, an antifungal antibiotic iturin producer, by electroporation. J Ferment Bioeng 73:261–264

    CAS  Google Scholar 

  • Moar WJ, Pusztai-Carey M, Faassen H van, Bosch D, Frutos R, Rang C, Luo K, Adang MJ (1995) Development of Bacillus thuringiensis Cry1C resistance by Spodoptera exigua (Hubner) (Lepidoptera noctuidae). Appl Environ Microbiol 61:2086–2092

    CAS  Google Scholar 

  • Morris ON (1976) A 2 year study of the efficacy of Bacillus thuringiensis-chitinase combinations in spruce budworm (Choristoneura fumiferana) control. Can Entomol 108:3225–3233

    Google Scholar 

  • Nation JL (2001) Insect physiology and biochemistry. CRC, Boca Raton, pp 40–41

  • Poncet S, Delecluse A, Anello G, Klier A, Rapoport G (1994) Transfer and expression of the cryIVB and cryIVD genes of Bacillus thuringiensis subsp. israelensis in Bacillus sphaericus 2297. FEMS Microbiol Lett 117:91–96

    Article  CAS  Google Scholar 

  • Regev A, Keller M, Strizhov N, Sneh B, Prudovsky E, Chet I, Ginzberg I, Koncz-Kalman Z, Koncz C, Schell S, et al (1996) Synergistic activity of a Bacillus thuringiensis delta-endotoxin and a bacterial endochitinase against Spodoptera littoralis larvae. Appl Environ Microbiol 62:3581–3586

    CAS  PubMed  Google Scholar 

  • Reissig JL, Lo SJ, Leloir LF (1955) A modified colorimetric method for the estimation of N-acetylamino sugars. J Biol Chem 217:959–966

    CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., pp A8.52–A8.55

    Google Scholar 

  • Sampson MN, Gooday GW (1998) Involvement of chitinases of Bacillus thuringiensis during pathogenesis in insects. Microbiology 144:2189–2194

    CAS  PubMed  Google Scholar 

  • Sirichotpakorn N, Rongnoparut P, Choosang K, Panbangred W (2001) Coexpression of chitinase and the cry11Aa1 toxin genes in Bacillus thuringiensis serovar israelensis. J Invertebr Pathol 78:160–169

    Article  CAS  PubMed  Google Scholar 

  • Smirnoff WA (1973) Results of test with B. thuringiensis and chitinase on larvae of spruce bud worm. J Invertebr Pathol 21:116–118

    Google Scholar 

  • Smirnoff WA (1974) Three years of aerial field experiments with Bacillus thuringiensis plus chitinase formulation against the spruce bud worm. J Invertebr Pathol 24:344–348

    Google Scholar 

  • Tantimavanich S, Pantuwatana S, Bhumiratana A, Panbangred W (1997) Cloning of chitinase gene into Bacillus thuringiensis subsp. aizawai for enhanced insecticidal activity. J Gen Appl Microbiol 43:341–347

    CAS  PubMed  Google Scholar 

  • Tantimavanich S, Pantuwatana S, Bhumiratana A, Panbangred W (1998) Multiple chitinase enzymes from a single gene of Bacillus licheniformis TP-1. J Ferment Bioeng 85:259–265

    Article  CAS  Google Scholar 

  • Tellam RL (1996) The peritrophic matrix. In: Lehane MJ, Billingsley PF (eds) Biology of the insect midgut. Chapman & Hall, London, pp 86–108

  • Terra WR (1990) Evolution of digestive systems of insects. Annu Rev Entomol 35:181–200

    Article  Google Scholar 

  • Thamthiankul S, Suan-Ngay S, Tantimavanich S, Panbangred W (2001) Chitinase from Bacillus thuringiensis subsp. pakistani. Appl Microbiol Biotechnol 56:395–401

    Article  CAS  PubMed  Google Scholar 

  • Trudel J, Asselin A (1989) Detection of chitinase activity after polyacrylamide gel electrophoresis. Anal Biochem 178:326–366

    Google Scholar 

  • Tsujibo H, Yoshida Y, Miyamoto K (1992) Purification, properties, and partial amino acid sequence of chitinase from a marion Alteromonas sp. strain 0-7. Can J Microbiol 38:891–897

    CAS  PubMed  Google Scholar 

  • Tsujibo H, Minoura K, Miyamoto K, Endo H, Moriwaki M, Inamori Y (1993) Purification and properties of a thermostable chitinase from Streptomyces thermoviolaceus OPC-520. Appl Environ Microbiol 59:620–622

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

S.T. is a recipient of the Royal Golden Jubilee Scholarship from the Thailand Research Fund. This work was partially supported by the National Center for Genetic Engineering and Biotechnology (BT-B-06-XG-14-4401) and the Ministry of University Affairs, under the subproject Higher Education for Science and Technology on Agricultural Biotechnology. We thank Mary Cupp and Dunhua Zhang, Department of Entomology and Plant Pathology, Auburn University, for their help and kind support in protein purification. We thank T.W. Flegel, Faculty of Science, Mahidol University, for critical reading of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Panbangred.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thamthiankul, S., Moar, W.J., Miller, M.E. et al. Improving the insecticidal activity of Bacillus thuringiensis subsp. aizawai against Spodoptera exigua by chromosomal expression of a chitinase gene. Appl Microbiol Biotechnol 65, 183–192 (2004). https://doi.org/10.1007/s00253-004-1606-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-004-1606-6

Keywords

Navigation