Skip to main content

Advertisement

Log in

miRNA and TMPRSS2-ERG do not mind their own business in prostate cancer cells

  • Review
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

Oncogenic fusion proteins belong to an important class that disrupts gene expression networks in a cell. Astonishingly, fusion-positive prostate cancer cells enable the multi-gene regulatory capability of miRNAs to remodel the signal transduction landscape, enhancing or antagonizing the transmission of information to downstream effectors. Accumulating evidence substantiates the fact that miRNAs translate into dose-dependent responsiveness of cells to signaling regulators in transmembrane protease serine 2:ETS-related gene (TMPRSS2-ERG)-positive cells. Wide ranging signaling proteins are the targets for the degree of quantitative fluctuations imposed by miRNAs. miRNA signatures are aberrantly expressed in fusion-positive cancer cells, suggesting that they have a cumulative effect on tumor aggressiveness. It seems attractive to note that TMPRSS2:ERG fusion has a stronger effect as tumors positive for the oncogenic TMPRSS2:ERG have dysregulated oncomirs and tumor suppressor miRNA signature. It is undeniable that a comprehensive analysis of the prostate cancer microRNAome is necessary to uncover novel microRNAs and pathways associated with prostate cancer. Moreover, the identification and validation of miRNA signature in TMPRSS2-ERG-positive prostate cancer cells may help to identify novel molecular targets and pathways for personalized therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andolfo I, Liguori L, De Antonellis P, Cusanelli E, Marinaro F, Pistollato F, Garzia L, De Vita G, Petrosino G, Accordi B, Migliorati R, Basso G, Iolascon A, Cinalli G, Zollo M (2012) The micro-RNA 199b-5p regulatory circuit involves Hes1, CD15, and epigenetic modifications in medulloblastoma. Neuro Oncol 14(5):596–612

    Article  PubMed  CAS  Google Scholar 

  • Bae Y, Yang T, Zeng HC, Campeau PM, Chen Y, Bertin T, Dawson BC, Munivez E, Tao J, Lee BH (2012) miRNA-34c regulates Notch signaling during bone development. Hum Mol Genet 21(13):2991–3000

    Article  PubMed  CAS  Google Scholar 

  • Bai XY, Ma Y, Ding R, Fu B, Shi S, Chen XM (2011) miR-335 and miR-34a promote renal senescence by suppressing mitochondrial antioxidative enzymes. J Am Soc Nephrol 22(7):1252–1261

    Article  PubMed  CAS  Google Scholar 

  • Belandia B, Powell SM, García-Pedrero JM, Walker MM, Bevan CL, Parker MG (2005) Hey1, a mediator of notch signaling, is an androgen receptor corepressor. Mol Cell Biol 25(4):1425–1436

    Article  PubMed  CAS  Google Scholar 

  • Bonci D, Coppola V, Musumeci M, Addario A, Giuffrida R, Memeo L, D'Urso L, Pagliuca A, Biffoni M, Labbaye C, Bartucci M, Muto G, Peschle C, De Maria R (2008) The miR-15a–miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat Med 14(11):1271–1277

    Article  PubMed  CAS  Google Scholar 

  • Borchert GM, Holton NW, Larson ED (2011) Repression of human activation induced cytidine deaminase by miR-93 and miR-155. BMC Cancer 11:347

    Article  PubMed  CAS  Google Scholar 

  • Boucher JM, Peterson SM, Urs S, Zhang C, Liaw L (2011) The miR-143/145 cluster is a novel transcriptional target of Jagged-1/Notch signaling in vascular smooth muscle cells. J Biol Chem 286(32):28312–28321

    Article  PubMed  CAS  Google Scholar 

  • Brabletz S, Bajdak K, Meidhof S, Burk U, Niedermann G, Firat E, Wellner U, Dimmler A, Faller G, Schubert J, Brabletz T (2011) The ZEB1/miR-200 feedback loop controls Notch signalling in cancer cells. EMBO J 30(4):770–782

    Article  PubMed  CAS  Google Scholar 

  • Brase JC, Johannes M, Mannsperger H, Fälth M, Metzger J, Kacprzyk LA, Andrasiuk T, Gade S, Meister M, Sirma H, Sauter G, Simon R, Schlomm T, Beissbarth T, Korf U, Kuner R, Sültmann H (2011) TMPRSS2-ERG-specific transcriptional modulation is associated with prostate cancer biomarkers and TGF-β signaling. BMC Cancer 11:507

    Article  PubMed  CAS  Google Scholar 

  • Capuano M, Iaffaldano L, Tinto N, Montanaro D, Capobianco V, Izzo V, Tucci F, Troncone G, Greco L, Sacchetti L (2011) MicroRNA-449a overexpression, reduced NOTCH1 signals and scarce goblet cells characterize the small intestine of celiac patients. PLoS One 6(12):29094

    Article  CAS  Google Scholar 

  • Catanzaro I, Caradonna F, Barbata G, Saverini M, Mauro M, Sciandrello G (2012) Genomic instability induced by α-pinene in Chinese hamster cell line. Mutagenesis 27(4):463–469

    Article  PubMed  CAS  Google Scholar 

  • Chen CF, He X, Arslan AD, Mo YY, Reinhold WC, Pommier Y, Beck WT (2011a) Novel regulation of nuclear factor-YB by miR-485-3p affects the expression of DNA topoisomerase IIα and drug responsiveness. Mol Pharmacol 79(4):735–741

    Article  PubMed  CAS  Google Scholar 

  • Chen G, Goto Y, Sakamoto R, Tanaka K, Matsubara E, Nakamura M, Zheng H, Lu J, Takayanagi R, Nomura M (2011b) GLI1, a crucial mediator of sonic hedgehog signaling in prostate cancer, functions as a negative modulator for androgen receptor. Biochem Biophys Res Commun 404(3):809–815

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Zhang W, Yan W, Han L, Zhang K, Shi Z, Zhang J, Wang Y, Li Y, Yu S, Pu P, Jiang C, Jiang T, Kang C (2012) The putative tumor suppressor miR-524-5p directly targets Jagged-1 and Hes-1 in glioma. Carcinogenesis 33(11):2276–2282

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Feuerstein MA, Levina E, Baghel PS, Carkner RD, Tanner MJ, Shtutman M, Vacherot F, Terry S, de la Taille A, Buttyan R (2010) Hedgehog/Gli supports androgen signaling in androgen deprived and androgen independent prostate cancer cells. Mol Cancer 9:89

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Zaman MS, Deng G, Majid S, Saini S, Liu J, Tanaka Y, Dahiya R (2011c) MicroRNAs 221/222 and genistein-mediated regulation of ARHI tumor suppressor gene in prostate cancer. Cancer Prev Res (Phila) 4(1):76–86

    Article  CAS  Google Scholar 

  • Chhipa RR, Lee KS, Onate S, Wu Y, Ip C (2009) Prx1 enhances androgen receptor function in prostate cancer cells by increasing receptor affinity to dihydrotestosterone. Mol Cancer Res 7(9):1543–1552

    Article  PubMed  CAS  Google Scholar 

  • Chipuk JE, Cornelius SC, Pultz NJ, Jorgensen JS, Bonham MJ, Kim SJ, Danielpour D (2002) The androgen receptor represses transforming growth factor-beta signaling through interaction with Smad3. J Biol Chem 277(2):1240–1248

    Article  PubMed  CAS  Google Scholar 

  • Chow A, Amemiya Y, Sugar L, Nam R, Seth A (2012) Whole-transcriptome analysis reveals established and novel associations with TMPRSS2:ERG fusion in prostate cancer. Anticancer Res 32(9):3629–3641

    PubMed  CAS  Google Scholar 

  • Cichocki F, Felices M, McCullar V, Presnell SR, Al-Attar A, Lutz CT, Miller JS (2011) Cutting edge: microRNA-181 promotes human NK cell development by regulating Notch signaling. J Immunol 187(12):6171–6175

    Article  PubMed  CAS  Google Scholar 

  • Coolen MW, Stirzaker C, Song JZ, Statham AL, Kassir Z, Moreno CS, Young AN, Varma V, Speed TP, Cowley M, Lacaze P, Kaplan W, Robinson MD, Clark SJ (2010) Consolidation of the cancer genome into domains of repressive chromatin by long-range epigenetic silencing (LRES) reduces transcriptional plasticity. Nat Cell Bio 12(3):235–246

    CAS  Google Scholar 

  • Antonellis PD, Medaglia C, Cusanelli E, Andolfo I, Liguori L, De Vita G, Carotenuto M, Bello A, Formiggini F, Galeone A, De Rosa G, Virgilio A, Scognamiglio I, Sciro M, Basso G, Schulte JH, Cinalli G, Iolascon A, Zollo M (2011) MiR-34a targeting of Notch ligand delta-like 1 impairs CD15+/CD133+ tumor-propagating cells and supports neural differentiation in medulloblastoma. PLoS One 6(9):24584

    Article  CAS  Google Scholar 

  • De Yebenes VG, Belver L, Pisano DG, González S, Villasante A, Croce C, He L, Ramiro AR (2008) miR-181b negatively regulates activation-induced cytidine deaminase in B cells. J Exp Med 205(10):2199–2206

    Article  PubMed  CAS  Google Scholar 

  • Dorsett Y, McBride KM, Jankovic M, Gazumyan A, Thai TH, Robbiani DF, Di Virgilio M, Reina San-Martin B, Heidkamp G, Schwickert TA, Eisenreich T, Rajewsky K, Nussenzweig MC (2008) MicroRNA-155 suppresses activation-induced cytidine deaminase-mediated Myc-Igh translocation. Immunity 28(5):630–638

    Article  PubMed  CAS  Google Scholar 

  • Druz A, Betenbaugh M, Shiloach J (2012) Glucose depletion activates mmu-miR-466 h-5p expression through oxidative stress and inhibition of histone deacetylation. Nucleic Acids Res 40(15):7291–7302

    Article  PubMed  CAS  Google Scholar 

  • Du R, Sun W, Xia L, Zhao A, Yu Y, Zhao L, Wang H, Huang C, Sun S (2007) Hypoxia-induced down-regulation of microRNA-34a promotes EMT by targeting the Notch signaling pathway in tubular epithelial cells. PLoS One 7(2):30771

    Article  CAS  Google Scholar 

  • Dutta KK, Zhong Y, Liu YT, Yamada T, Akatsuka S, Hu Q, Yoshihara M, Ohara H, Takehashi M, Shinohara T, Masutani H, Onuki J, Toyokuni S (2007) Association of microRNA-34a overexpression with proliferation is cell type-dependent. Cancer Sci 98(12):1845–1852

    Article  PubMed  CAS  Google Scholar 

  • Egea V, Zahler S, Rieth N, Neth P, Popp T, Kehe K, Jochum M, Ries C (2012) Tissue inhibitor of metalloproteinase-1 (TIMP-1) regulates mesenchymal stem cells through let-7f microRNA and Wnt/β-catenin signaling Proc Natl Acad Sci U S A 109(6):309–316

    Article  Google Scholar 

  • Fang L, Zhang HB, Li H, Fu Y, Yang GS (2012) miR-548c-5p inhibits proliferation and migration and promotes apoptosis in CD90(+) HepG2 cells. Radiol Oncol 46(3):233–241

    Article  PubMed  CAS  Google Scholar 

  • Fareh M, Turchi L, Virolle V, Debruyne D, Almairac F, De-la-Forest Divonne S, Paquis P, Preynat-Seauve O, Krause KH, Chneiweiss H, Virolle T (2012) The miR 302-367 cluster drastically affects self-renewal and infiltration properties of glioma-initiating cells through CXCR4 repression and consequent disruption of the SHH-GLI-NANOG network. Cell Death Differ 19(2):232–244

    Article  PubMed  CAS  Google Scholar 

  • Fazi F, Racanicchi S, Zardo G, Starnes LM, Mancini M, Travaglini L, Diverio D, Ammatuna E, Cimino G, Lo-Coco F, Grignani F, Nervi C (2007) Epigenetic silencing of the myelopoiesis regulator microRNA-223 bythe AML1/ETO oncoprotein. Cancer Cell 12(5):457–466

    Article  PubMed  CAS  Google Scholar 

  • Ferdin J, Kunej T, Calin GA (2010) Non-coding RNAs: identification of cancer-associated microRNAs by gene profiling. Technol Cancer Res Treat 9(2):123–138

    PubMed  CAS  Google Scholar 

  • Ferretti E, De Smaele E, Miele E, Laneve P, Po A, Pelloni M, Paganelli A, Di Marcotullio L, Caffarelli E, Screpanti I, Bozzoni I, Gulino A (2008) Concerted microRNA control of Hedgehog signalling in cerebellar neuronal progenitor and tumour cells. EMBO J 27(19):2616–2627

    Article  PubMed  CAS  Google Scholar 

  • Fineberg SK, Datta P, Stein CS, Davidson BL (2012) MiR-34a represses Numbl in murine neural progenitor cells and antagonizes neuronal differentiation. PLoS One 7(6):38562

    Article  CAS  Google Scholar 

  • Fujii Y, Kawakami S, Okada Y, Kageyama Y, Kihara K (2004) Regulation of prostate-specific antigen by activin A in prostate cancer LNCaP cells. Am J Physiol Endocrinol Metab 286(6):E927–E931

    Article  PubMed  CAS  Google Scholar 

  • Fuse M, Kojima S, Enokida H, Chiyomaru T, Yoshino H, Nohata N, Kinoshita T, Sakamoto S, Naya Y, Nakagawa M, Ichikawa T, Seki N (2012) Tumor suppressive microRNAs (miR-222 and miR-31) regulate molecular pathways based on microRNA expression signature in prostate cancer. J Hum Genet 57(11):691–699

    Article  PubMed  CAS  Google Scholar 

  • Galardi S, Mercatelli N, Farace MG, Ciafrè SA (2011) NF-kB and c-Jun induce the expression of the oncogenic miR-221 and miR-222 in prostate carcinoma and glioblastoma cells. Nucleic Acids Res 39(9):3892–3902

    Article  PubMed  CAS  Google Scholar 

  • Garzia L, Andolfo I, Cusanelli E, Marino N, Petrosino G, De Martino D, Esposito V, Galeone A, Navas L, Esposito S, Gargiulo S, Fattet S, Donofrio V, Cinalli G, Brunetti A, Vecchio LD, Northcott PA, Delattre O, Taylor MD, Iolascon A, Zollo M (2009) MicroRNA-199b-5p impairs cancer stem cells through negative regulation of HES1 in medulloblastoma. PLoS One 4(3):4998

    Article  CAS  Google Scholar 

  • Gerdes MJ, Dang TD, Larsen M, Rowley DR (1998) Transforming growth factor-beta1 induces nuclear to cytoplasmic distribution of androgen receptor and inhibits androgen response in prostate smooth muscle cells. Endocrinology 139(8):3569–3577

    Article  PubMed  CAS  Google Scholar 

  • Ghisi M, Corradin A, Basso K, Frasson C, Serafin V, Mukherjee S, Mussolin L, Ruggero K, Bonanno L, Guffanti A, De Bellis G, Gerosa G, Stellin G, D'Agostino DM, Basso G, Bronte V, Indraccolo S, Amadori A, Zanovello P (2011) Modulation of microRNA expression in human T-cell development: targeting of NOTCH3 by miR-150. Blood 117(26):7053–7062

    Article  PubMed  CAS  Google Scholar 

  • Giorgi G, Marcantonio P, Del Re B (2011) LINE-1 retrotransposition in human neuroblastoma cells is affected by oxidative stress. Cell Tissue Res 346(3):383–391

    Article  PubMed  CAS  Google Scholar 

  • Gordanpour A, Stanimirovic A, Nam RK, Moreno CS, Sherman C, Sugar L, Seth A (2011) miR-221 is down-regulated in TMPRSS2:ERG fusion-positive prostate cancer. Anticancer Res 31(2):403–410

    PubMed  CAS  Google Scholar 

  • Gupta S, Iljin K, Sara H, Mpindi JP, Mirtti T, Vainio P, Rantala J, Alanen K, Nees M, Kallioniemi O (2007) FZD4 as a mediator of ERG oncogene-induced WNT signaling and epithelial-to-mesenchymal transition in human prostate cancer cells. Cancer Res 70(17):6735–6745

    Article  CAS  Google Scholar 

  • Gupta S, Iljin K, Sara H, Mpindi JP, Mirtti T, Vainio P, Rantala J, Alanen K, Nees M, Kallioniemi O (2010) FZD4 as a mediator of ERG oncogene-induced WNT signaling and epithelial-to-mesenchymal transition in human prostate cancer cells. Cancer Res 70(17):6735–45

    Google Scholar 

  • Gusscott S, Kuchenbauer F, Humphries RK, Weng AP (2012) Notch-mediated repression of miR-223 contributes to IGF1R regulation in T-ALL. Leuk Res 36(7):905–911

    Article  PubMed  CAS  Google Scholar 

  • Gwak J, Lee JH, Chung YH, Song GY, Small OS (2012) Molecule-based promotion of PKCα-mediated β-catenin degradation suppresses the proliferation of CRT-positive cancer cells. PLoS One 7(10):46697

    Article  CAS  Google Scholar 

  • Haffner MC, Aryee MJ, Toubaji A, Esopi DM, Albadine R, Gurel B, Isaacs WB, Bova GS, Liu W, Xu J, Meeker AK, Netto G, De Marzo AM, Nelson WG, Yegnasubramanian S (2010) Androgen-induced TOP2B-mediated double-strand breaks and prostate cancer gene rearrangements. Nat Genet 42(8):668–675

    Article  PubMed  CAS  Google Scholar 

  • Hayes SA, Zarnegar M, Sharma M, Yang F, Peehl DM, ten Dijke P, Sun Z (2001) SMAD3 represses androgen receptor-mediated transcription. Cancer Res 61(5):2112–2118

    PubMed  CAS  Google Scholar 

  • Hirata H, Hinoda Y, Ueno K, Nakajima K, Ishii N, Dahiya R (2012a) MicroRNA-1826 directly targets beta-catenin (CTNNB1) and MEK1 (MAP2K1) in VHL-inactivated renal cancer. Carcinogenesis 33(3):501–508

    Article  PubMed  CAS  Google Scholar 

  • Hirata H, Hinoda Y, Ueno K, Shahryari V, Tabatabai ZL, Dahiya R (2012b) MicroRNA-1826 targets VEGFC, beta-catenin (CTNNB1) and MEK1 (MAP2K1) in human bladder cancer. Carcinogenesis 33(1):41–48

    Article  PubMed  CAS  Google Scholar 

  • Huang ME, Kolodner RD (2005) A biological network in Saccharomyces cerevisiae prevents the deleterious effects of endogenous oxidative DNA damage. Mol Cell 17:709–720

    Google Scholar 

  • Hulf T, Sibbritt T, Wiklund ED, Bert S, Strbenac D, Statham AL, Robinson MD, Clark SJ (2011) Discovery pipeline for epigenetically deregulated miRNAs in cancer: integration of primary miRNA transcription. BMC Genomics 21:12–54

    Google Scholar 

  • Im YH, Kim HT, Lee C, Poulin D, Welford S, Sorensen PH, Denny CT, Kim SJ (2000) EWS-FLI1, EWS-ERG, and EWS-ETV1 oncoproteins of Ewing tumor family all suppress transcription of transforming growth factor beta type II receptor gene. Cancer Res 60(6):1536–1540

    PubMed  CAS  Google Scholar 

  • Iraqui I, Kienda G, Soeur J, Faye G, Baldacci G, Kolodner RD, Huang ME (2009) Peroxiredoxin Tsa1 is the key peroxidase suppressing genome instability and protecting against cell death in Saccharomyces cerevisiae. PLoS Genet 5(6):1000524

    Article  CAS  Google Scholar 

  • Jalava SE, Urbanucci A, Latonen L, Waltering KK, Sahu B, Janne OA, Seppala J, Lahdesmaki H, Tammela TL, Visakorpi T (2012) Androgen-regulated miR-32 targets BTG2 and is overexpressed in castration-resistant prostate cancer. Oncogene 31(41):4460–4471. doi:10.1038/onc.2011.624

    Article  PubMed  CAS  Google Scholar 

  • Ji J, Yamashita T, Wang XW (2011) Wnt/beta-catenin signaling activates microRNA-181 expression in hepatocellular carcinoma. Cell Biosci 1(1):4

    Article  PubMed  CAS  Google Scholar 

  • Ji X, Wang Z, Geamanu A, Goja A, Sarkar FH, Gupta SV (2012) Delta-tocotrienol suppresses Notch-1 pathway by upregulating miR-34a in nonsmall cell lung cancer cells. Int J Cancer 131(11):2668–2677

    Article  PubMed  CAS  Google Scholar 

  • Jiang X, Huang H, Li Z, He C, Li Y, Chen P, Gurbuxani S, Arnovitz S, Hong GM, Price C, Ren H, Kunjamma RB, Neilly MB, Salat J, Wunderlich M, Slany RK, Zhang Y, Larson RA, Le Beau MM, Mulloy JC, Rowley JD, Chen J (2012) MiR-495 is a tumor-suppressor microRNA down-regulated in MLLrearranged leukemia. Proc Natl Acad Sci USA 109(47):19397–402

    Google Scholar 

  • Jiang X, Xiang G, Wang Y, Zhang L, Yang X, Cao L, Peng H, Xue P, Chen D (2012) MicroRNA-590-5p regulates proliferation and invasion in human hepatocellular carcinoma cells by targeting. TGF-β RII 33(6):545–551

    Google Scholar 

  • Kang HY, Huang HY, Hsieh CY, Li CF, Shyr CR, Tsai MY, Chang C, Chuang YC, Huang KE (2009) Activin A enhances prostate cancer cell migration through activation of androgen receptor and is overexpressed in metastatic prostate cancer. J Bone Miner Res 24(7):1180–1193

    Article  PubMed  CAS  Google Scholar 

  • Kang HY, Huang KE, Chang SY, Ma WL, Lin WJ, Chang C (2002) Differential modulation of androgen receptor-mediated transactivation by Smad3 and tumor suppressor Smad4. J Biol Chem 277(46):43749–43756

    Article  PubMed  CAS  Google Scholar 

  • Karanjawala ZE, Murphy N, Hinton DR, Hsieh CL, Lieber MR (2002) Oxygen metabolism causes chromosome breaks and is associated with the neuronal apoptosis observed in DNA double-strand break repair mutants. Curr Biol 12:397–402

    Article  PubMed  CAS  Google Scholar 

  • Kashat M, Azzouz L, Sarkar SH, Kong D, Li Y, Sarkar FH (2012) Inactivation of AR and Notch-1 signaling by miR-34a attenuates prostate cancer aggressiveness. Am J Transl Res 4(4):432–442

    PubMed  CAS  Google Scholar 

  • Kawano Y, Diez S, Uysal-Onganer P, Darrington RS, Waxman J, Kypta RM (2009) Secreted Frizzled-related protein-1 is a negative regulator of androgen receptor activity in prostate cancer. Br J Cancer 100(7):1165–1174

    Article  PubMed  CAS  Google Scholar 

  • Kefas B, Comeau L, Floyd DH, Seleverstov O, Godlewski J, Schmittgen T, Jiang J, diPierro CG, Li Y, Chiocca EA, Lee J, Fine H, Abounader R, Lawler S, Purow B (2009) The neuronal microRNA miR-326 acts in a feedback loop with notch and has therapeutic potential against brain tumors. J Neurosci 29(48):15161–15168

    Article  PubMed  CAS  Google Scholar 

  • Keklikoglou I, Koerner C, Schmidt C, Zhang JD, Heckmann D, Shavinskaya A, Allgayer H, Guckel B, Fehm T, Schneeweiss A, Sahin O, Wiemann S, Tschulena U (2011) MicroRNA-520/373 family functions as a tumor suppressor in estrogen receptor negative breast cancer by targeting NF-κB and TGF-β signaling pathways. Oncogene 31(37):4150–4163

    Article  PubMed  CAS  Google Scholar 

  • Kim HK, Prokunina-Olsson L, Chanock SJ (2012) Common genetic variants in miR-1206 (8q24.2) and miR-612 (11q13.3) affect biogenesis of mature miRNA forms. PLoS One 7(10):47454

    Article  CAS  Google Scholar 

  • Kim YJ, Hwang SJ, Bae YC, Jung JS (2009) MiR-21 regulates adipogenic differentiation through the modulation of TGF-beta signaling in mesenchymal stem cells derived from human adipose tissue. Stem Cells 12:3093–3102

    Google Scholar 

  • Krutzfeldt J, Rosch N, Hausser J, Manoharan M, Zavolan M, Stoffel M (2012) MicroRNA-194 is a target of transcription factor 1 (Tcf1, HNF1α) in adult liver and controls expression of frizzled-6. Hepatology 55(1):98–107

    Article  PubMed  CAS  Google Scholar 

  • Kumar-Sinha C, Tomlins SA, Chinnaiyan AM (2008) Recurrent gene fusions in prostate cancer. Nat Rev Cancer 8:497–511

    Article  PubMed  CAS  Google Scholar 

  • Laschak M, Spindler KD, Schrader AJ, Hessenauer A, Streicher W, Schrader M, Cronauer MV (2012) JS-K, a glutathione/glutathione S-transferase-activated nitric oxide releasing prodrug inhibits androgen receptor and WNT-signaling in prostate cancer cells. BMC Cancer 12:130

    Article  PubMed  CAS  Google Scholar 

  • Lavery DN, Villaronga MA, Walker MM, Patel A, Belandia B, Bevan CL (2011) Repression of androgen receptor activity by HEYL, a third member of the Hairy/Enhancer-of-split-related family of Notch effectors. J Biol Chem 286(20):17796–17808

    Article  PubMed  CAS  Google Scholar 

  • Lehmusvaara S, Erkkila T, Urbanucci A, Jalava S, Seppala J, Kaipia A, Kujala P, Lahdesmaki H, Tammela TL, Visakorpi T (2013) Goserelin and bicalutamide treatments alter the expression of microRNAs in the prostate. Prostate 73(1):101–112

    Article  PubMed  CAS  Google Scholar 

  • Lehmusvaara S, Erkkilä T, Urbanucci A, Waltering K, Seppälä J, Larjo A, Tuominen VJ, Isola J, Kujala P, Lähdesmäki H, Kaipia A, Tammela TLj, Visakorpi T (2012). Chemical castration and antiandrogens induce differential gene expression in prostate cancer. J Pathol 227(3):336–45

  • Leone V, D'Angelo D, Pallante P, Croce CM, Fusco A (2012) Thyrotropin regulates thyroid cell proliferation by up-regulating miR-23b and miR-29b that target SMAD3. J Clin Endocrinol Metab 97(9):3292–3301

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Kong D, Ahmad A, Bao B, Dyson G, Sarkar FH (2012) Epigenetic deregulation of miR-29a and miR-1256 by isoflavone contributes to the inhibition of prostate cancer cell growth and invasion. Epigenetics 7(8):940–949

    Article  PubMed  CAS  Google Scholar 

  • Lin C, Yang L, Tanasa B, Hutt K, Ju BG, Ohgi K, Zhang J, Rose DW, Fu XD, Glass CK, Rosenfeld MG (2009) Nuclear receptor-induced chromosomal proximity and DNA breaks underlie specific translocations in cancer. Cell 139(6):1069–1083

    Article  PubMed  CAS  Google Scholar 

  • Ling M, Li Y, Xu Y, Pang Y, Shen L, Jiang R, Zhao Y, Yang X, Zhang J, Zhou J, Wang X, Liu Q (2012) Regulation of miRNA-21 by reactive oxygen species-activated ERK/NF-κB in arsenite-induced cell transformation. Free Radic Biol Med 52(9):1508–1518

    Article  PubMed  CAS  Google Scholar 

  • Liu AM, Qu WW, Liu X, Qu CK (2012a) Chromosomal instability in in vitro cultured mouse hematopoietic cells associated with oxidative stress. Am J Blood Res 2(1):71–76

    PubMed  CAS  Google Scholar 

  • Liu C, Kelnar K, Vlassov AV, Brown D, Wang J, Tang DG (2012b) Distinct microRNA expression profiles in prostate cancer stem/progenitor cells and tumor-suppressive functions of let-7. Cancer Res 72(13):3393–3404

    Article  PubMed  CAS  Google Scholar 

  • Lize M, Pilarski S, Dobbelstein M (2010) E2F1-inducible microRNA 449a/b suppresses cell proliferation and promotes apoptosis. Cell Death Differ 17(3):452–458

    Article  PubMed  CAS  Google Scholar 

  • Lo SS, Hung PS, Chen JH, Tu HF, Fang WL, Chen CY, Chen WT, Gong NR, Wu CW (2012) Overexpression of miR-370 and downregulation of its novel target TGFβ-RII contribute to the progression of gastric carcinoma. Oncogene 31(2):226–237

    Article  PubMed  CAS  Google Scholar 

  • Lu W, Lin C, King TD, Chen H, Reynolds RC, Li Y (2012) Silibinin inhibits Wnt/β-catenin signaling by suppressing Wnt co-receptor LRP6 expression in human prostate and breast cancer cells. Cell Signal 24(12):2291–2296

    Article  PubMed  CAS  Google Scholar 

  • Magenta A, Cencioni C, Fasanaro P, Zaccagnini G, Greco S, Sarra-Ferraris G, Antonini A, Martelli F, Capogrossi MC (2011) miR-200c is upregulated by oxidative stress and induces endothelial cell apoptosis and senescence via ZEB1 inhibition. Cell Death Differ 18(10):1628–1639

    Article  PubMed  CAS  Google Scholar 

  • Manfe V, Biskup E, Rosbjerg A, Kamstrup M, Skov AG, Lerche CM, Lauenborg BT, Odum N, Gniadecki R (2012) miR-122 regulates p53/Akt signalling and the chemotherapy-induced apoptosis in cutaneous T-cell lymphoma. PLoS One 7(1):e29541

    Article  PubMed  CAS  Google Scholar 

  • Mao X, Boyd LK, Yáñez-Muñoz RJ, Chaplin T, Xue L, Lin D, Shan L, Berney DM, Young BD, Lu YJ (2011) Chromosome rearrangement associated inactivation of tumour suppressor genes in prostate cancer. Am J Cancer Res 1(5):604–617

    PubMed  Google Scholar 

  • Mascareno EJ, Belashov I, Siddiqui MA, Liu F, Dhar-Mascareno M (2012) Hexim-1 modulates androgen receptor and the TGF-β signaling during the progression of prostate cancer. Prostate 72(9):1035–1044

    Article  PubMed  CAS  Google Scholar 

  • Mateescu B, Batista L, Cardon M, Gruosso T, de Feraudy Y, Mariani O, Nicolas A, Meyniel JP, Cottu P, Sastre-Garau X, Mechta-Grigoriou F (2011) miR-141 and miR-200a act on ovarian tumorigenesis by controlling oxidative stress response. Nat Med 17(12):1627–1635

    Article  PubMed  CAS  Google Scholar 

  • Mavridis K, Stravodimos K, Scorilas A (2012) Downregulation and prognostic performance of microRNA 224 expression in prostate cancer. Clin Chem 59(1):261–269

    Google Scholar 

  • Mehraein-Ghomi F, Basu HS, Church DR, Hoffmann FM, Wilding G (2010) Androgen receptor requires JunD as a coactivator to switch on an oxidative stress generation pathway in prostate cancer cells. Cancer Res 70(11):4560–4568

    Article  PubMed  CAS  Google Scholar 

  • Mercatelli N, Coppola V, Bonci D, Miele F, Costantini A, Guadagnoli M, Bonanno E, Muto G, Frajese GV, De Maria R, Spagnoli LG, Farace MG, Ciafre SA (2008) The inhibition of the highly expressed miR-221 and miR-222 impairs the growth of prostate carcinoma xenografts in mice. PLoS One 3(12):4029

    Article  CAS  Google Scholar 

  • Miles GD, Seiler M, Rodriguez L, Rajagopal G, Bhanot G (2012) Identifying microRNA/mRNA dysregulations in ovarian cancer. BMC Res Notes 27:5–164

    Google Scholar 

  • Mitani T, Harada N, Nakano Y, Inui H, Yamaji R (2012) Coordinated action of hypoxia-inducible factor-1α and β-catenin in androgen receptor signaling. J Biol Chem 287(40):33594–33606

    Article  PubMed  CAS  Google Scholar 

  • Mochmann LH, Bock J, Ortiz-Tánchez J, Schlee C, Bohne A, Neumann K, Hofmann WK, Thiel E, Baldus CD (2011) Genome-wide screen reveals WNT11, a non-canonical WNT gene, as a direct target of ETS transcription factor ERG. Oncogene 30(17):2044–2056

    Article  PubMed  CAS  Google Scholar 

  • Mraz M, Dolezalova D, Plevova K, Stano Kozubik K, Mayerova V, Cerna K, Musilova K, Tichy B, Pavlova S, Borsky M, Verner J, Doubek M, Brychtova Y, Trbusek M, Hampl A, Mayer J, Pospisilova S (2012) MicroRNA-650 expression is influenced by immunoglobulin gene rearrangement and affects the biology of chronic lymphocytic leukemia. Blood 119(9):2110–2113

    Article  PubMed  CAS  Google Scholar 

  • Murata T, Takayama K, Katayama S, Urano T, Horie-Inoue K, Ikeda K, Takahashi S, Kawazu C, Hasegawa A, Ouchi Y, Homma Y, Hayashizaki Y, Inoue S (2010) miR-148a is an androgen-responsive microRNA that promotes LNCaP prostate cell growth by repressing its target CAND1 expression. Prostate Cancer Prostatic Dis 13(4):356–61

    Google Scholar 

  • Nadiminty N, Tummala R, Lou W, Zhu Y, Shi XB, Zou JX, Chen H, Zhang J, Chen X, Luo J, deVere White RW, Kung HJ, Evans CP, Gao AC (2012) MicroRNA let-7c is downregulated in prostate cancer and suppresses prostate cancer growth. PLoS One 7(3):e32832

    Article  PubMed  CAS  Google Scholar 

  • Nicotera TM, Block AW, Gibas Z, Sandberg AA (1985) Induction of superoxide dismutase, chromosomal aberrations and sister-chromatid exchanges by paraquat in Chinese hamster fibroblasts. Mutat Res 151(2):263–268

    Article  PubMed  CAS  Google Scholar 

  • Nieborowska-Skorska M, Kopinski PK, Ray R, Hoser G, Ngaba D, Flis S, Cramer K, Reddy MM, Koptyra M, Penserga T, Glodkowska-Mrowka E, Bolton E, Holyoake TL, Eaves CJ, Cerny-Reiterer S, Valent P, Hochhaus A, Hughes TP, van der Kuip H, Sattler M, Wiktor-Jedrzejczak W, Richardson C, Dorrance A, Stoklosa T, Williams DA, Skorski T (2012) Rac2-MRC-cIII-generated ROS cause genomic instability in chronic myeloid leukemia stem cells and primitive progenitors. Blood 119(18):4253–4263

    Article  PubMed  CAS  Google Scholar 

  • Northcott PA, Fernandez-L A, Hagan JP, Ellison DW, Grajkowska W, Gillespie Y, Grundy R, Van Meter T, Rutka JT, Croce CM, Kenney AM, Taylor MD (2009) The miR-17/92 polycistron is up-regulated in sonic hedgehog-driven medulloblastomas and induced by N-myc in sonic hedgehog-treated cerebellar neural precursors. Cancer Res 69(8):3249–3255

    Article  PubMed  CAS  Google Scholar 

  • Ogusucu R, Rettori D, Netto LE, Augusto O (2009) Superoxide dismutase 1-mediated production of ethanol- and DNA-derived radicals in yeasts challenged with hydrogen peroxide: molecular insights into the genome instability of peroxiredoxin-null strains. J Biol Chem 284(9):5546–5556

    Article  PubMed  CAS  Google Scholar 

  • Pan Z, Guo Y, Qi H, Fan K, Wang S, Zhao H, Fan Y, Xie J, Guo F, Hou Y, Wang N, Huo R, Zhang Y, Liu Y, Du Z (2012) M3 subtype of muscarinic acetylcholine receptor promotes cardioprotection via the suppression of miR-376b-5p. PLoS One 7(3):e32571

    Article  PubMed  CAS  Google Scholar 

  • Paone A, Galli R, Fabbri M (2011) MicroRNAs as new characters in the plot between epigenetics and prostate cancer. Front Genet 2:62

    Article  PubMed  Google Scholar 

  • Pogue AI, Percy ME, Cui JG, Li YY, Bhattacharjee S, Hill JM, Kruck TP, Zhao Y, Lukiw WJ (2011) Up-regulation of NF-kB-sensitive miRNA-125b and miRNA-146a in metal sulfate-stressed human astroglial (HAG) primary cell cultures. J Inorg Biochem 105(11):1434–1437

    Article  PubMed  CAS  Google Scholar 

  • Porkka KP, Ogg EL, Saramäki OR, Vessella RL, Pukkila H, Lähdesmäki H, van Weerden WM, Wolf M, Kallioniemi OP, Jenster G, Visakorpi T (2011) The miR-15a–miR-16-1 locus is homozygously deleted in a subset of prostate cancers. Genes Chromosomes Cancer 50(7):499–509

    Article  PubMed  CAS  Google Scholar 

  • Powell SM, Brooke GN, Whitaker HC, Reebye V, Gamble SC, Chotai D, Dart DA, Belandia B, Bevan CL (2006) Mechanisms of androgen receptor repression in prostate cancer. Biochem Soc Trans 34(6):1124–1127

    Article  PubMed  CAS  Google Scholar 

  • Pu H, Collazo J, Jones E, Gayheart D, Sakamoto S, Vogt A, Mitchell B, Kyprianou N (2009) Dysfunctional transforming growth factor-beta receptor II accelerates prostate tumorigenesis in the TRAMP mouse model. Cancer Res 69(18):7366–7374

    Article  PubMed  CAS  Google Scholar 

  • Qi W, Gao S, Wang Z (2008) Transcriptional regulation of the TGF-beta1 promoter by androgen receptor. Biochem J 416(3):453–462

    Article  PubMed  CAS  Google Scholar 

  • Qiu T, Grizzle WE, Oelschlager DK, Shen X, Cao X (2007) Control of prostate cell growth: BMP antagonizes androgen mitogenic activity with incorporation of MAPK signals in Smad1. EMBO J 26(2):346–357

    Article  PubMed  CAS  Google Scholar 

  • Radzikinas K, Aven L, Jiang Z, Tran T, Paez-Cortez J, Boppidi K, Lu J, Fine A, Ai X (2011) A Shh/miR-206/BDNF cascade coordinates innervation and formation of airway smooth muscle. J Neurosci 31(43):15407–15415

    Article  PubMed  CAS  Google Scholar 

  • Ragu S (2007) Oxygen metabolism and reactive oxygen species cause chromosomal rearrangements and cell death. Proc Natl Acad Sci USA 104:9747–9752

    Google Scholar 

  • Rao X, Di Leva G, Li M, Fang F, Devlin C, Hartman-Frey C, Burow ME, Ivan M, Croce CM, Nephew KP (2011) MicroRNA-221/222 confers breast cancer fulvestrant resistance by regulating multiple signaling pathways. Oncogene 30(9):1082–1097

    Article  PubMed  CAS  Google Scholar 

  • Rippe V, Dittberner L, Lorenz VN, Drieschner N, Nimzyk R, Sendt W, Junker K, Belge G, Bullerdiek J (2010) The two stem cell microRNA gene clusters C19MC and miR-371-3 are activated by specific chromosomal rearrangements in a subgroup of thyroid adenomas. PLoS One 5(3):e9485

    Article  PubMed  CAS  Google Scholar 

  • Saleh AD, Savage JE, Cao L, Soule BP, Ly D, DeGraff W, Harris CC, Mitchell JB, Simone NL (2011) Cellular stress induced alterations in microRNA let-7a and let-7b expression are dependent on p53. PLoS One 6(10):e24429

    Article  PubMed  CAS  Google Scholar 

  • Sanchez P, Hernández AM, Stecca B, Kahler AJ, DeGueme AM, Barrett A, Beyna M, Datta MW, Datta S, Ruiz i Altaba A (2004) Inhibition of prostate cancer proliferation by interference with SONIC HEDGEHOG-GLI1 signaling Proc Natl Acad Sci U S A 101(34):12561–12566

    Article  PubMed  CAS  Google Scholar 

  • Schaefer A, Jung M, Mollenkopf HJ, Wagner I, Stephan C, Jentzmik F, Miller K, Lein M, Kristiansen G, Jung K (2010) Diagnostic and prognostic implications of microRNA profiling in prostate carcinoma. Int J Cancer 126(5):1166–1176

    PubMed  CAS  Google Scholar 

  • Schweizer L, Rizzo CA, Spires TE, Platero JS, Wu Q, Lin TA, Gottardis MM, Attar RM (2008) The androgen receptor can signal through Wnt/beta-Catenin in prostate cancer cells as an adaptation mechanism to castration levels of androgens. BMC Cell Biol 9:4

    Article  PubMed  CAS  Google Scholar 

  • Selth LA, Townley S, Gillis JL, Ochnik AM, Murti K, Macfarlane RJ, Chi KN, Marshall VR, Tilley WD, Butler LM (2012) Discovery of circulating microRNAs associated with human prostate cancer using a mouse model of disease. Int J Cancer 131(3):652–661

    Article  PubMed  CAS  Google Scholar 

  • Shen G, Jia H, Tai Q, Li Y, Chen D (2013) miR-106b downregulates adenomatous polyposis coli (APC) and promotes cell proliferation in human hepatocellular carcinoma. Carcinogenesis 34(1):211–219

    Google Scholar 

  • Shiota M, Yokomizo A, Kashiwagi E, Takeuchi A, Fujimoto N, Uchiumi T, Naito S (2011) Peroxiredoxin 2 in the nucleus and cytoplasm distinctly regulates androgen receptor activity in prostate cancer cells. Free Radic Biol Med 51(1):78–87

    Article  PubMed  CAS  Google Scholar 

  • Shiota M, Yokomizo A, Tada Y, Inokuchi J, Kashiwagi E, Masubuchi D, Eto M, Uchiumi T, Naito S (2010) Castration resistance of prostate cancer cells caused by castration-induced oxidative stress through Twist1 and androgen receptor overexpression. Oncogene 29(2):237–250

    Article  PubMed  CAS  Google Scholar 

  • Sirab N, Terry S, Giton F, Caradec J, Chimingqi M, Moutereau S, Vacherot F, Taille Ade L, Kouyoumdjian JC, Loric S (2012) Androgens regulate Hedgehog signalling and proliferation in androgen-dependent prostate cells. Int J Cancer 131(6):1297–1306

    Article  PubMed  CAS  Google Scholar 

  • Song G, Zhang Y, Wang L (2009) MicroRNA-206 targets notch3, activates apoptosis, and inhibits tumor cell migration and focus formation. J Biol Chem 284(46):31921–31927

    Article  PubMed  CAS  Google Scholar 

  • Srikantan S, Abdelmohsen K, Lee EK, Tominaga K, Subaran SS, Kuwano Y, Kulshrestha R, Panchakshari R, Kim HH, Yang X, Martindale JL, Marasa BS, Kim MM, Wersto RP, Indig FE, Chowdhury D, Gorospe M (2011) Translational control of TOP2A influences doxorubicin efficacy. Mol Cell Biol 18:3790–3801

    Article  CAS  Google Scholar 

  • Subramaniam D, Ponnurangam S, Ramamoorthy P, Standing D, Battafarano RJ, Anant S, Sharma P (2012) Curcumin induces cell death in esophageal cancer cells through modulating Notch signaling. PLoS One 7(2):e30590

    Article  PubMed  CAS  Google Scholar 

  • Sun JY, Huang Y, Li JP, Zhang X, Wang L, Meng YL, Yan B, Bian YQ, Zhao J, Wang WZ, Yang AG, Zhang R (2012a) MicroRNA-320a suppresses human colon cancer cell proliferation by directly targeting β-catenin. Biochem Biophys Res Commun 420(4):787–792

    Article  PubMed  CAS  Google Scholar 

  • Sun T, Yang M, Chen S, Balk S, Pomerantz M, Hsieh CL, Brown M, Lee GS, Kantoff PW (2012b) The altered expression of MiR-221/-222 and MiR-23b/-27b is associated with the development of human castration resistant prostate cancer. Prostate 72(10):1093–1103

    Article  PubMed  CAS  Google Scholar 

  • Sun T, Wang Q, Balk S, Brown M, Lee GS, Kantoff P (2009) The role of microRNA-221 and microRNA-222 in androgen-independent prostate cancer cell lines. Cancer Res 69(8):3356–3363

    Article  PubMed  CAS  Google Scholar 

  • Sureban SM, May R, Mondalek FG, Qu D, Ponnurangam S, Pantazis P, Anant S, Ramanujam RP, Houchen CW (2011) Nanoparticle-based delivery of siDCAMKL-1 increases microRNA-144 and inhibits colorectal cancer tumor growth via a Notch-1 dependent mechanism. J Nanobiotechnology 9:40

    Article  PubMed  CAS  Google Scholar 

  • Syed Khaja AS, Helczynski L, Edsjö A, Ehrnström R, Lindgren A, Ulmert D, Andersson T, Bjartell A (2011) Elevated level of Wnt5a protein in localized prostate cancer tissue is associated with better outcome. PLoS One 6(10):e26539

    Article  PubMed  CAS  Google Scholar 

  • Szczyrba J, Löprich E, Wach S, Jung V, Unteregger G, Barth S, Grobholz R, Wieland W, Stöhr R, Hartmann A, Wullich B, Grässer F (2010) The microRNA profile of prostate carcinoma obtained by deep sequencing. Mol Cancer Res 8(4):529–538

    Article  PubMed  CAS  Google Scholar 

  • Takahashi S, Watanabe T, Okada M, Inoue K, Ueda T, Takada I, Watabe T, Yamamoto Y, Fukuda T, Nakamura T, Akimoto C, Fujimura T, Hoshino M, Imai Y, Metzger D, Miyazono K, Minami Y, Chambon P, Kitamura T, Matsumoto T, Kato S (2011) Noncanonical Wnt signaling mediates androgen-dependent tumor growth in a mouse model of prostate cancer. Proc Natl Acad Sci U S A 108(12):4938–4943

    Google Scholar 

  • Takei Y, Takigahira M, Mihara K, Tarumi Y, Yanagihara K (2012) The metastasis-associated microRNA miR-516a-3p is a novel therapeutic target for inhibiting peritoneal dissemination of human scirrhous gastric cancer. Cancer Res 71(4):1442–1453

    Article  CAS  Google Scholar 

  • Tang HM, Siu KL, Wong CM, Jin DY (2009) Loss of yeast peroxiredoxin Tsa1p induces genome instability through activation of the DNA damage checkpoint and elevation of dNTP levels. PLoS Genet 5(10):e1000697

    Article  PubMed  CAS  Google Scholar 

  • Tong AW, Fulgham P, Jay C, Chen P, Khalil I, Liu S, Senzer N, Eklund AC, Han J, Nemunaitis J (2009) MicroRNA profile analysis of human prostate cancers. Cancer Gene Ther 16(3):206–216

    PubMed  CAS  Google Scholar 

  • Ueno K, Hirata H, Majid S, Yamamura S, Shahryari V, Tabatabai ZL, Hinoda Y, Dahiya R (2012) Tumor suppressor microRNA-493 decreases cell motility and migration ability in human bladder cancer cells by downregulating RhoC and FZD4. Mol Cancer Ther 11(1):244–253

    Article  PubMed  CAS  Google Scholar 

  • Ugras S, Brill E, Jacobsen A, Hafner M, Socci ND, Decarolis PL, Khanin R, O'Connor R, Mihailovic A, Taylor BS, Sheridan R, Gimble JM, Viale A, Crago A, Antonescu CR, Sander C, Tuschl T, Singer S (2011) Small RNA sequencing and functional characterization reveals MicroRNA-143 tumor suppressor activity in liposarcoma. Cancer Res 71(17):5659–5669

    Article  PubMed  CAS  Google Scholar 

  • Uysal-Onganer P, Kawano Y, Caro M, Walker MM, Diez S, Darrington RS, Waxman J, Kypta RM (2010) Wnt-11 promotes neuroendocrine-like differentiation, survival and migration of prostate cancer cells. Mol Cancer 9:55

    Article  PubMed  CAS  Google Scholar 

  • Valastyan S, Reinhardt F, Benaich N, Calogrias D, Szász AM, Wang ZC, Brock JE, Richardson AL, Weinberg RA (2009) A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell 137(6):1032–1046

    Article  PubMed  CAS  Google Scholar 

  • Venkataraman S, Alimova I, Fan R, Harris P, Foreman N, Vibhakar R (2010) MicroRNA 128a increases intracellular ROS level by targeting Bmi-1 and inhibits medulloblastoma cancer cell growth by promoting senescence. PLoS One 5(6):e10748

    Article  PubMed  CAS  Google Scholar 

  • Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, Prueitt RL, Yanaihara N, Lanza G, Scarpa A, Vecchione A, Negrini M, Harris CC, Croce CM (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 103(7):2257–2261

    Google Scholar 

  • Wan X, Liu J, Lu JF, Tzelepi V, Yang J, Starbuck MW, Diao L, Wang J, Efstathiou E, Vazquez ES, Troncoso P, Maity SN, Navone NM (2012) Activation of β-catenin signaling in androgen receptor-negative prostate cancer cells. Clin Cancer Res 18(3):726–736

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Huang JW, Li M, Cavenee WK, Mitchell PS, Zhou X, Tewari M, Furnari FB, Taniguchi T (2011) MicroRNA-138 modulates DNA damage response by repressing histone H2AX expression. Mol Cancer Res 9(8):1100–1111

    Article  PubMed  CAS  Google Scholar 

  • Wu Y, Chhipa RR, Zhang H, Ip C (2011) The antiandrogenic effect of finasteride against a mutant androgen receptor. Cancer Biol Ther 11(10):902–909

    Article  PubMed  CAS  Google Scholar 

  • Wu Z, Sun H, Zeng W, He J, Mao X (2012) Upregulation of microRNA-370 induces proliferation in human prostate cancer cells by downregulating the transcription factor FOXO1. PLoS One 7(9):e45825

    Article  PubMed  CAS  Google Scholar 

  • Xia H, Ooi LL, Hui KM (2012) MiR-214 targets β-catenin pathway to suppress invasion, stem-like traits and recurrence of human hepatocellular carcinoma. PLoS One 7(9):e44206

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Zhu X, Wu L, Yang R, Yang Z, Wang Q, Wu F (2012) MicroRNA-122 suppresses cell proliferation and induces cell apoptosis in hepatocellular carcinoma by directly targeting Wnt/β-catenin pathway. Liver Int 32(5):752–760

    Article  PubMed  CAS  Google Scholar 

  • Yan K, Gao J, Yang T, Ma Q, Qiu X, Fan Q, Ma B (2012) MicroRNA-34a inhibits the proliferation and metastasis of osteosarcoma cells both in vitro and in vivo. PLoS One 7(3):e33778

    Article  PubMed  CAS  Google Scholar 

  • Yang K, Handorean AM, Iczkowski KA (2009) MicroRNAs 373 and 520c are downregulated in prostate cancer, suppress CD44 translation and enhance invasion of prostate cancer cells in vitro. Int J Clin Exp Pathol 2(4):361–369

    PubMed  CAS  Google Scholar 

  • Yang Y, Ahn YH, Gibbons DL, Zang Y, Lin W, Thilaganathan N, Alvarez CA, Moreira DC, Creighton CJ, Gregory PA, Goodall GJ, Kurie JM (2011) The Notch ligand Jagged2 promotes lung adenocarcinoma metastasis through a miR-200-dependent pathway in mice. J Clin Invest 121(4):1373–1385

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Chou HY, Shen TL, Chang WJ, Tai PH, Li TK (2013) Topoisomerase II-mediated DNA cleavage and mutagenesis activated by nitric oxide underlie the inflammation-associated tumorigenesis. Antioxid Redox Signal. doi:10.1089/ars.2012.4620

  • Yu F, Jiao Y, Zhu Y, Wang Y, Zhu J, Cui X, Liu Y, He Y, Park EY, Zhang H, Lv X, Ma K, Su F, Park JH, Song E (2012a) MicroRNA 34c gene down-regulation via DNA methylation promotes self-renewal and epithelial–mesenchymal transition in breast tumor-initiating cells. J Biol Chem 287(1):465–473

    Article  PubMed  CAS  Google Scholar 

  • Yu X, Wang Y, DeGraff DJ, Wills ML, Matusik RJ (2011) Wnt/β-catenin activation promotes prostate tumor progression in a mouse model. Oncogene 30(16):1868–1879

    Article  PubMed  CAS  Google Scholar 

  • Yu Y, Kanwar SS, Patel BB, Oh PS, Nautiyal J, Sarkar FH, Majumdar AP (2012b) MicroRNA-21 induces stemness by downregulating transforming growth factor beta receptor 2 (TGFβR2) in colon cancer cells. Carcinogenesis 33(1):68–76

    Article  PubMed  CAS  Google Scholar 

  • Yu ZW, Zhong LP, Ji T, Zhang P, Chen WT, Zhang CP (2010) MicroRNAs contribute to the chemoresistance of cisplatin in tongue squamous cell carcinoma lines. Oral Oncol 46(4):317–322

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Hao Y, Yang J, Zhou Y, Li J, Yin S, Sun C, Ma M, Huang Y, Xi JJ (2011) Genome-wide functional screening of miR-23b as a pleiotropic modulator suppressing cancer metastasis. Nat Commun 2:554

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Han C, Wu T (2012a) MicroRNA-26a promotes cholangiocarcinoma growth by activating β-catenin. Gastroenterology 143(1):246–256

    Article  PubMed  CAS  Google Scholar 

  • Zhang P, Bill K, Liu J, Young E, Peng T, Bolshakov S, Hoffman A, Song Y, Demicco EG, Terrada DL, Creighton CJ, Anderson ML, Lazar AJ, Calin GG, Pollock RE, Lev D (2012b) MiR-155 is a liposarcoma oncogene that targets casein kinase-1α and enhances β-catenin signaling. Cancer Res 72(7):1751–1762

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, He X, Liu Y, Ye Y, Zhang H, He P, Zhang Q, Dong L, Liu Y, Dong J (2012c) microRNA-320a inhibits tumor invasion by targeting neuropilin 1 and is associated with liver metastasis in colorectal cancer. Oncol Rep 27(3):685–694

    PubMed  CAS  Google Scholar 

  • Zhuo M, Zhu C, Sun J, Weis WI, Sun Z (2011) The beta-catenin binding protein ICAT modulates androgen receptor activity. Mol Endocrinol 25(10):1677–1688

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ammad Ahmad Farooqi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fayyaz, S., Farooqi, A.A. miRNA and TMPRSS2-ERG do not mind their own business in prostate cancer cells. Immunogenetics 65, 315–332 (2013). https://doi.org/10.1007/s00251-012-0677-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-012-0677-2

Keywords

Navigation