Skip to main content
Log in

Crystallization of monoacylated proteins: influence of acyl chain length

  • ARTICLE
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

The crystallization of monoacylated proteins has been investigated using a model system. Acylated derivatives of bovine pancreatic ribonuclease A, differing in their acyl chain lengths (10 to 16 carbon atoms), have been prepared using reverse micelles as microreactors. With one fatty acid moiety per polypeptide chain, covalently attached to the NH2 terminus of the protein, all the modified proteins have similar enzymatic activity and hydrodynamic radius as the native protein. Only the caprylated derivative can give crystals which diffract to high resolution. The resolved structure indicates that: (i) the protein folding is not modified by the chemical modification, (ii) the capryl moiety is not buried within the molecule but available for external interactions. Dynamic light scattering experiments on concentrated solutions show that protein-protein interactions are dependent on acyl chain length. Proteins with the longest attached chains (14 and 16 carbon atoms) tend to self-associate through acyl group interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Received: 4 October 1996 / Accepted: 13 December 1996

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roy, MO., Uppenberg, J., Robert, S. et al. Crystallization of monoacylated proteins: influence of acyl chain length. Eur Biophys J 26, 155–162 (1997). https://doi.org/10.1007/s002490050067

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s002490050067

Navigation