Skip to main content
Log in

Structural dynamics of nucleosome mediated by acetylations at H3K56 and H3K115,122

  • Original Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Post translational modifications have a profound role in the regulation of several biological processes such as transcription, replication, and DNA repair. Acetylation and phosphorylation form a major class of post translational modifications involved in nucleosomal regulation by modifying its structure. The effect of post translational modifications on nucleosome structure could be better explored when the molecular trajectories explaining the time dependent structural evolution over a period of time is examined at the atomic level. The present study attempts to highlight the importance of acetylation, especially at entry–exit (Lys56) and dyad (Lys115 and Lys122) regions in regulating the nucleosome accessibility and mobility using all atom simulations. It is evident from this study that acetylation at Lys56, Lys115, and Lys122 introduces local changes in the electrostatic nature of the lateral surface and thereby weakens the histone–DNA interactions. In addition, simulations also reveal significant changes in the dynamics of superhelical DNA. The acetylation at Lys56 promotes a high amplitude out-of-planar movement of entry–exit termini. Whereas, acetylation at Lys115 and Lys122 increases the flexibility of the superhelical DNA to facilitate the rolling of the superhelical DNA around the octameric histone. In essence, the present study highlights the role of acetylation at Lys56, Lys115, and Lys122 in transcriptional regulation by promoting high amplitude dynamics of superhelical DNA for a possible unwrapping as well as mobility of nucleosome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

Aly:

Acetyllysine

PTM:

Post-translational modification

SHL:

Super helix location

MD:

Molecular dynamics

PCA:

Principle component analysis

RESP:

Restrained electrostatic potential

RDF:

Radial distribution function

SASA:

Solvent accessible surface area

FEL:

Free energy landscape

NUCwt :

Wildtype nucleosome

NUC56 :

Acetylated nucleosome H3K56

NUC115,122 :

Acetylated nucleosome H3K115,122

RMSD:

Root mean square deviation

Rg:

Radius of gyration

References

  • Allfrey VG, Faulkner R, Mirsky AE (1964) Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci USA 51:786–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21:381–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bishop TC (2008) Geometry of the nucleosomal DNA superhelix. Biophys J 95:1007–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biswas M, Langowski J, Bishop TC (2013) Atomistic simulations of nucleosomes. Wiley Interdiscip Rev Comput Mol Sci 3:378–392

    Article  CAS  Google Scholar 

  • Biswas M, Voltz K, Smith JC, Langowski J (2010) Role of histone tails in structural stability of the nucleosome. PLoS Comput Biol 7:e1002279

    Article  Google Scholar 

  • Bowman GD, Poirier MG (2014) Post-translational modifications of histones that influence nucleosome dynamics. Chem Rev 115:2274–2295

    Article  PubMed  PubMed Central  Google Scholar 

  • Brehove M et al (2015) Histone core phosphorylation regulates DNA accessibility. J Biol Chem 290:22612–22621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Case DA et al (2012) AMBER 12. University of California, San Francisco

    Google Scholar 

  • Cieplak P, Cornell WD, Bayly C, Kollman PA (1995) Application of the multimolecule and multiconformational RESP methodology to biopolymers: charge derivation for DNA RNA, and proteins. J Comput Chem 16:1357–1377

    Article  CAS  Google Scholar 

  • Cosgrove MS, Boeke JD, Wolberger C (2004) Regulated nucleosome mobility and the histone code. Nat Struct Mol Biol 11:1037–1043

    Article  CAS  PubMed  Google Scholar 

  • Cosgrove MS, Wolberger C (2005) How does the histone code work? Biochem Cell Biol 83:468–476

    Article  CAS  PubMed  Google Scholar 

  • Daidone I, Amadei A (2012) Essential dynamics: foundation and applications. Wiley Interdiscip Rev Comput Mol Sci 2:762–770

    Article  CAS  Google Scholar 

  • Darden T, York D, Pedersen L (1993) Particle mesh Ewald—an N.Log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  • Dickerson RE (1998) DNA bending: the prevalence of kinkiness and the virtues of normality. Nucl Acids Res 26:1906–1926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobrovolskaia IV, Arya G (2012) Dynamics of forced nucleosome unraveling and role of nonuniform histone-DNA interactions. Biophys J 103:989–998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ettig R, Kepper N, Stehr R, Wedemann G, Rippe K (2011) Dissecting DNA-histone interactions in the nucleosome by molecular dynamics simulations of DNA unwrapping. Biophys J 101:1999–2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forties RA, North JA, Javaid S, Tabbaa OP, Fishel R, Poirier MG, Bundschuh R (2011) A quantitative model of nucleosome dynamics. Nucl Acids Res 39:8306–8313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frisch MJ et al (2004) Gaussian 03. Gaussian, Inc.

  • Homeyer N, Horn AH, Lanig H, Sticht H (2006) AMBER force-field parameters for phosphorylated amino acids in different protonation states: phosphoserine, phosphothreonine, phosphotyrosine, and phosphohistidine. J Mol Model 12:281–289

    Article  CAS  PubMed  Google Scholar 

  • Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins 65:712–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(33–38):27–38

    Google Scholar 

  • Hyland EM, Cosgrove MS, Molina H, Wang D, Pandey A, Cottee RJ, Boeke JD (2005) Insights into the role of histone H3 and histone H4 core modifiable residues in Saccharomyces cerevisiae. Mol Cell Biol 25:10060–10070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwasaki W, Tachiwana H, Kawaguchi K, Shibata T, Kagawa W, Kurumizaka H (2011) Comprehensive structural analysis of mutant nucleosomes containing lysine to glutamine (KQ) substitutions in the H3 and H4 histone-fold domains. Biochemistry 50:7822–7832

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  • Kebede AF, Schneider R, Daujat S (2014) Novel types and sites of histone modifications emerge as players in the transcriptional regulation contest. FEBS J 282:1658–1674

    Article  PubMed  Google Scholar 

  • Kono H, Shirayama K, Arimura Y, Tachiwana H, Kurumizaka H (2015) Two arginine residues suppress the flexibility of nucleosomal DNA in the canonical nucleosome core. PLoS One 10:e0120635

    Article  PubMed  PubMed Central  Google Scholar 

  • Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    Article  CAS  PubMed  Google Scholar 

  • Li G, Levitus M, Bustamante C, Widom J (2005) Rapid spontaneous accessibility of nucleosomal DNA. Nat Struct Mol Biol 12(1):46–53

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Duan Y (2008) Effects of posttranslational modifications on the structure and dynamics of histone H3 N-terminal Peptide. Biophys J 94:4579–4585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loncharich RJ, Brooks BR, Pastor RW (1992) Langevin dynamics of peptides: the frictional dependence of isomerization rates of N-acetylalanyl-N′-methylamide. Biopolymers 32:523–535. doi:10.1002/bip.360320508

    Article  CAS  PubMed  Google Scholar 

  • Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389:251–260

    Article  CAS  PubMed  Google Scholar 

  • Manohar M et al (2009) Acetylation of histone H3 at the nucleosome dyad alters DNA-histone binding. J Biol Chem 284:23312–23321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marino-Ramirez L, Kann MG, Shoemaker BA, Landsman D (2005) Histone structure and nucleosome stability. Expert Rev Proteom 2:719–729

    Article  CAS  Google Scholar 

  • McGinty RK, Tan S (2014) Nucleosome structure and function. Chem Rev 115:2255–2273

    Article  PubMed  PubMed Central  Google Scholar 

  • Mersfelder EL, Parthun MR (2006) The tale beyond the tail: histone core domain modifications and the regulation of chromatin structure. Nucl Acids Res 34:2653–2662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muthukumaran R, Sangeetha B, Amutha R (2015) Conformational analysis on the wild type and mutated forms of human ORF1p: a molecular dynamics study. Mol BioSyst 11:1987–1999

    Article  CAS  PubMed  Google Scholar 

  • North JA et al (2012) Regulation of the nucleosome unwrapping rate controls DNA accessibility. Nucl Acids Res 40:10215–10227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramaswamy A, Bahar I, Ioshikhes I (2005) Structural dynamics of nucleosome core particle: comparison with nucleosomes containing histone variants. Proteins 58:683–696. doi:10.1002/prot.20357

    Article  CAS  PubMed  Google Scholar 

  • Richmond TJ, Davey CA (2003) The structure of DNA in the nucleosome core. Nature 423:145–150. doi:10.1038/nature01595

    Article  CAS  PubMed  Google Scholar 

  • Richmond TJ, Finch JT, Rushton B, Rhodes D, Klug A (1984) Structure of the nucleosome core particle at 7 A resolution. Nature 311:532–537

    Article  CAS  PubMed  Google Scholar 

  • Roccatano D, Barthel A, Zacharias M (2007) Structural flexibility of the nucleosome core particle at atomic resolution studied by molecular dynamics simulation. Biopolymers 85:407–421

    Article  CAS  PubMed  Google Scholar 

  • Roe DR, Cheatham TE (2013) PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J Chem Theory Comput 9:3084–3095

    Article  CAS  PubMed  Google Scholar 

  • Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341

    Article  CAS  Google Scholar 

  • Simon M et al (2011) Histone fold modifications control nucleosome unwrapping and disassembly. Proc Natl Acad Sci USA 108:12711–12716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sudhanshu B, Mihardja S, Koslover EF, Mehraeen S, Bustamante C, Spakowitz AJ (2011) Tension-dependent structural deformation alters single-molecule transition kinetics. Proc Natl Acad Sci USA 108:1885–1890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suto RK, Clarkson MJ, Tremethick DJ, Luger K (2000) Crystal structure of a nucleosome core particle containing the variant histone H2A.Z. Nat Struct Biol 7:1121–1124

    Article  CAS  PubMed  Google Scholar 

  • Tessarz P, Kouzarides T (2014) Histone core modifications regulating nucleosome structure and dynamics. Nat Rev Mol Cell Biol 15:703–708

    Article  CAS  PubMed  Google Scholar 

  • Tolstorukov MY, Colasanti AV, McCandlish DM, Olson WK, Zhurkin VB (2007) A novel roll-and-slide mechanism of DNA folding in chromatin: implications for nucleosome positioning. J Mol Biol 371:725–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tropberger P et al (2013) Regulation of transcription through acetylation of H3K122 on the lateral surface of the histone octamer. Cell 152:859–872

    Article  CAS  PubMed  Google Scholar 

  • Tropberger P, Schneider R (2010) Going global Novel histone modifications in the globular domain of H3. Epigenetics 5:112–117

    Article  CAS  PubMed  Google Scholar 

  • Tropberger P, Schneider R (2013) Scratching the (lateral) surface of chromatin regulation by histone modifications. Nat Struct Mol Biol 20:657–661

    Article  CAS  PubMed  Google Scholar 

  • Venkatesh S, Workman JL (2015) Histone exchange, chromatin structure and the regulation of transcription. Nat Rev Mol Cell Biol 16:178–189

    Article  CAS  PubMed  Google Scholar 

  • Watanabe S, Resch M, Lilyestrom W, Clark N, Hansen JC, Peterson C, Luger K (2010) Structural characterization of H3K56Q nucleosomes and nucleosomal arrays. Biochim Biophys Acta 1799:480–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiser J, Shenkin PS, Still WC (1999) Approximate atomic surfaces from linear combinations of pairwise overlaps (LCPO). J Comput Chem 20:217–230

    Article  CAS  Google Scholar 

  • Williams SK, Truong D, Tyler JK (2008) Acetylation in the globular core of histone H3 on lysine-56 promotes chromatin disassembly during transcriptional activation. Proc Natl Acad Sci USA 105:9000–9005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Workman JL, Kingston RE (1998) Alteration of nucleosome structure as a mechanism of transcriptional regulation. Annu Rev Biochem 67:545–579

    Article  CAS  PubMed  Google Scholar 

  • Yang D, Arya G (2011) Structure and binding of the H4 histone tail and the effects of lysine 16 acetylation. Phys Chem Chem Phys 13:2911–2921

    Article  CAS  PubMed  Google Scholar 

  • Yun M, Wu J, Workman JL, Li B (2011) Readers of histone modifications. Cell Res 21:564–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

One of the authors, Ramaswamy Amutha, acknowledges the Science and Engineering Research Board, India, for the financial support in the form of Fast Track Scheme for Young Scientists (SR/FT/LS-33/2010). The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amutha Ramaswamy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1980 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajagopalan, M., Balasubramanian, S., Ioshikhes, I. et al. Structural dynamics of nucleosome mediated by acetylations at H3K56 and H3K115,122. Eur Biophys J 46, 471–484 (2017). https://doi.org/10.1007/s00249-016-1191-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-016-1191-5

Keywords

Navigation