Skip to main content
Log in

Analysis of self-assembly of S-layer protein slp-B53 from Lysinibacillus sphaericus

  • Original Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

The formation of stable and functional surface layers (S-layers) via self-assembly of surface-layer proteins on the cell surface is a dynamic and complex process. S-layers facilitate a number of important biological functions, e.g., providing protection and mediating selective exchange of molecules and thereby functioning as molecular sieves. Furthermore, S-layers selectively bind several metal ions including uranium, palladium, gold, and europium, some of them with high affinity. Most current research on surface layers focuses on investigating crystalline arrays of protein subunits in Archaea and bacteria. In this work, several complementary analytical techniques and methods have been applied to examine structure–function relationships and dynamics for assembly of S-layer protein slp-B53 from Lysinibacillus sphaericus: (1) The secondary structure of the S-layer protein was analyzed by circular dichroism spectroscopy; (2) Small-angle X-ray scattering was applied to gain insights into the three-dimensional structure in solution; (3) The interaction with bivalent cations was followed by differential scanning calorimetry; (4) The dynamics and time-dependent assembly of S-layers were followed by applying dynamic light scattering; (5) The two-dimensional structure of the paracrystalline S-layer lattice was examined by atomic force microscopy. The data obtained provide essential structural insights into the mechanism of S-layer self-assembly, particularly with respect to binding of bivalent cations, i.e., Mg2+ and Ca2+. Furthermore, the results obtained highlight potential applications of S-layers in the fields of micromaterials and nanobiotechnology by providing engineered or individual symmetric thin protein layers, e.g., for protective, antimicrobial, or otherwise functionalized surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Balkundi SS, Veerabadran NG, Eby DM, Johnson GR, Lvov YM (2009) Encapsulation of bacterial spores in nanoorganized polyelectrolyte shells. Langmuir 25:14011–14016

    Article  CAS  PubMed  Google Scholar 

  • Baranova E, Fronzes R, Garcia-Pino A, Van Gerven N, Papapostolou D, Péhau-Arnaudet G, Pardon E, Steyaert J, Howorka S, Remaut H (2012) SbsB structure and lattice reconstruction unveil Ca2+ triggered S-layer assembly. Nature 487(7405):119–122

    CAS  PubMed  Google Scholar 

  • Beveidge T, Murray R (1976) Dependence of the superficial layers of Spirillum putridiconchylium on Ca2+ or Sr2+. Can J Microbiol 22:1233–1244

    Article  Google Scholar 

  • Blanchet CE, Spilotros A, Schwemmer F, Graewert MA, Kikhney AG, Jeffries CM, Franke D, Mark D, Zengerle R, Cipriani F, Fiedler S, Roessle M, Svergun DI (2015) Versatile sample environments and automation for biological solution X-ray scattering experiments at the P12 beamline (PETRA III, DESY). J Appl Cryst 48(2):431–443

    Article  CAS  Google Scholar 

  • Borgstahl GE (2007) How to use dynamic light scattering to improve the likelihood of growing macromolecular crystals. In: Macromolecular crystallography protocols. Springer, Berlin, pp 109–130

  • Chung S, Shin S, Bertozzi C, De Yoreo J (2010) Self-catalyzed growth of S layers via an amorphous-to-crystalline transition limited by folding kinetics. PNAS 107:16536–16541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dierks K, Meyer A, Einspahr H, Betzel C (2008) Dynamic light scattering in protein crystallization droplets: adaptations for analysis and optimization of crystallization processes. Cryst Growth Des 8:1628–1634

    Article  CAS  Google Scholar 

  • Dooley J, McCubbin W, Kay C, Trust T (1988) Isolation and biochemical characterization of the S-layer protein from a pathogenic Aeromonas hydrophila strain. J Bacteriol 170:2631–2638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engelhardt H (2007) Are S-layers exoskeletons? The basic function of protein surface layers revisited. J Struct Biol 160:115–124

    Article  CAS  PubMed  Google Scholar 

  • Fagan R, Fairweather N (2014) Biogenesis and functions of bacterial S-layers. Nat Rev Microbiol 12:211–222

    Article  CAS  PubMed  Google Scholar 

  • Franke D, Svergun DI (2009) DAMMIF, a program for rapid ab initio shape determination in small-angle scattering. J Appl Crystallogr 42:342–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franke D, Kikhney AG, Svergun DI (2012) Automated acquisition and analysis of small angle X-ray scattering data. Nucl Instrum Methods Phys Res Sect A 689:52–59

    Article  CAS  Google Scholar 

  • Franz B, Balkundi SS, Dahl C, Lvov YM, Prange A (2010) Layer-by-layer nano-encapsulation of microbes: controlled cell surface modification and investigation of substrate uptake in bacteria. Macromol Biosci 10:164–172

    Article  CAS  PubMed  Google Scholar 

  • Geisse NA (2009) AFM and combined optical techniques. Mater Today 12:40–45

    Article  CAS  Google Scholar 

  • Georgieva R, Moya S, Donath E, Bäumler H (2004) Permeability and conductivity of red blood cell templated polyelectrolyte capsules coated with supplementary layers. Langmuir 20:1895–1900

    Article  CAS  PubMed  Google Scholar 

  • Glatter O, Kratky O (1982) Small angle X-ray scattering. Academic, London

    Google Scholar 

  • Györvary ES, Stein O, Pum D, Sleytr UB (2003) Self-assembly and recrystallization of bacterial S-layer proteins at silicon supports imaged in real time by atomic force microscopy. J Microsc 212:300–306

    Article  PubMed  Google Scholar 

  • Horejs C, Gollner H, Pum D, Sleytr UB, Peterlik H, Jungbauer A, Tscheliessnig R (2011) Atomistic structure of monomolecular surface layer self-assemblies: toward functionalized nanostructures. ACS Nano 5:2288–2297

    Article  CAS  PubMed  Google Scholar 

  • Ishiguro E, Kay W, Ainsworth T, Chamberlain J, Austen R, Buckley J, Trust T (1981) Loss of virulence during culture of Aeromonas salmonicida at high temperature. J Bacteriol 148:333–340

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kern J, Schneewind O (2010) BslA, the S-layer adhesin of B. anthracis, is a virulence factor for anthrax pathogenesis. Mol Microbiol 75:324–332

    Article  CAS  PubMed  Google Scholar 

  • Kern J, Wilton R, Zhang R, Binkowski TA, Joachimiak A, Schneewind O (2011) Structure of surface layer homology (SLH) domains from Bacillus anthracis surface array protein. J Biol Chem 286:26042–26049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kokka RP, Vedros NA, Janda JM (1990) Electrophoretic analysis of the surface components of autoagglutinating surface array protein-positive and surface array protein-negative Aeromonas hydrophila and Aeromonas sobria. J Clin Microbiol 28:2240–2247

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koval S, Murray R (1984) The isolation of surface array proteins from bacteria. Can J Biochem Cell Biol 62:1181–1189

    Article  CAS  PubMed  Google Scholar 

  • Kummer K, Vyalikh D, Blüher A, Sivkov V, Maslyuk V, Bredow T, Mertig I, Mertig M, Molodtsov S (2011) Real-time study of the modification of the peptide bond by atomic calcium. J Phys Chem B 115:2401–2407

    Article  CAS  PubMed  Google Scholar 

  • Lederer FL, Weinert U, Günther TJ, Raff J, Weiß S, Pollmann K (2013) Identification of multiple putative S-layer genes partly expressed by Lysinibacillus sphaericus JG-B53. Microbiology 159:1097–1108

    Article  CAS  PubMed  Google Scholar 

  • Lipfert J, Doniach S (2007) Small-angle X-ray scattering from RNA, proteins, and protein complexes. Annu Rev Biophys Biomol Struct 36:307–327

    Article  CAS  PubMed  Google Scholar 

  • Makhatadze GI, Privalov PL (1995) Energetics of protein structure. Adv Protein Chem 47:307–425

    Article  CAS  PubMed  Google Scholar 

  • Merroun ML, Raff J, Rossberg A, Hennig C, Reich T, Selenska-Pobell S (2005) Complexation of uranium by cells and S-layer sheets of Bacillus sphaericus JG-A12. Appl Environ Microbiol 71:5532–5543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pavkov T, Egelseer EM, Tesarz M, Svergun DI, Sleytr UB, Keller W (2008) The structure and binding behavior of the bacterial cell surface layer protein SbsC. Structure 16(8):1226–1237

    Article  CAS  PubMed  Google Scholar 

  • Peltier J, Courtin P, El Meouche I, Lemee L, Chapot-Chartier MP, Pons JL (2011) Clostridium difficile has an original peptidoglycan structure with a high level of N-acetylglucosamine deacetylation and mainly 3–3 cross-links. J Biol Chem 286:29053–29062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petoukhov MV, Franke D, Shkumatov AV, Tria G, Kikhney AG, Gajda M, Gorba C, Mertens HD, Konarev PV, Svergun DI (2012) New developments in the program package for small-angle scattering data analysis. J Appl Crystallogr 45:342–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pollmann K, Raff J, Schnorpfeil M, Radeva G, Selenska-Pobell S (2005) Novel surface layer protein genes in Bacillus sphaericus associated with unusual insertion elements. Microbiology 151:2961–2973

    Article  PubMed  Google Scholar 

  • Prabhu NV, Sharp KA (2005) Heat capacity in proteins. Annu Rev Phys Chem 56:521–548

    Article  CAS  PubMed  Google Scholar 

  • Privalov PL, Gill SJ (1988) Stability of protein structure and hydrophobic interaction. Adv Protein Chem 39:191–234

    Article  CAS  PubMed  Google Scholar 

  • Pum D, Sára M, Sleytr U (1989) Structure, surface charge, and self-assembly of the S-layer lattice from Bacillus coagulans E38-66. J Bacteriol 171:5296–5303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rad B, Haxton T, Shon A, Shin S, Whitelam S, Ajo-Franklin C (2015) Ion-specific control of the self-assembly dynamics of a nanostructured protein lattice. ACS Nano 9:180–190

    Article  CAS  PubMed  Google Scholar 

  • Raff J, Selenska-Pobell S (2006) Toxic avengers. Nucl Eng Int 51:34–36

    CAS  Google Scholar 

  • Raff J, Soltmann U, Matys S, Selenska-Pobell S, Böttcher H, Pompe W (2003) Biosorption of uranium and copper by biocers. Chem Mater 15:240–244

    Article  CAS  Google Scholar 

  • Rost B, Yachdav G, Liu J (2004) The PredictProtein server. Nucleic Acids Res 32:W321–W326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5:725–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roy A, Yang J, Zhang Y (2012) COFACTOR: an accurate comparative algorithm for structure-based protein function annotation. Nucleic Acids Res 40:W471–W477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabet M, Lee S-W, Nauman R, Sims T, Um H-S (2003) The surface (S-) layer is a virulence factor of Bacteroides forsythus. Microbiology 149:3617–3627

    Article  CAS  PubMed  Google Scholar 

  • Sara M, Sleytr UB (1987) Molecular sieving through S layers of Bacillus stearothermophilus strains. J Bacteriol 169:4092–4098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sára M, Sleytr UB (2000) S-layer proteins. J Bacteriol 182:859–868

    Article  PubMed  PubMed Central  Google Scholar 

  • Sarkar SK (1996) NMR spectroscopy and its application to biomedical research. Elsevier Science, Amsterdam

    Google Scholar 

  • Schuster B, Sleytr UB (2009) Composite S-layer lipid structures. J Struct Biol 168:207–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin A, Chung S, Sanii B, Comollie L, Bertozzi C, De Yoreo J (2012) Direct observation of kinetic traps associated with structural transformations leading to multiple pathways of S-layer assembly. PNAS 109:12968–12973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sleytr UB (1975) Heterologous reattachment of regular arrays of glycoproteins on bacterial surfaces. Nature Publishing Group, UK

    Google Scholar 

  • Sleytr U (1978) Regular array of macromolecules on bacterial cell walls: structure, chemistry, assembly, and function. Int Rev Cytol 53:1–64

    Article  CAS  PubMed  Google Scholar 

  • Sleytr UB, Messner P, Pum D, Sara M (1996) Crystalline bacterial cell surface proteins. Academic, New York

    Google Scholar 

  • Sleytr UB, Messner P (1983) Crystalline surface layers on bacteria. Annu Rev Microbiol 37:311–339

    Article  CAS  PubMed  Google Scholar 

  • Sleytr UB, Messner P, Pum D, Sara M (1999) Crystalline bacterial cell surface layers (S layers): from supramolecular cell structure to biomimetics and nanotechnology. Angew Chem Int Ed 38:1034–1054

    Article  CAS  Google Scholar 

  • Sockett RE (2009) Predatory lifestyle of Bdellovibrio bacteriovorus. Annu Rev Microbiol 63:523–539

    Article  CAS  PubMed  Google Scholar 

  • Svergun D, Barberato C, Koch M (1995) CRYSOL—a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates. J Appl Crystallogr 28:768–773

    Article  CAS  Google Scholar 

  • Teixeira L, Strickland A, Mark S, Bergkvist M, Sierra-Sastre Y, Batt C (2010) Entropically driven self-assembly of Lysinibacillus sphaericus S-layer proteins analyzed under various environmental conditions. Macromol Biosci 10:147–155

    Article  CAS  PubMed  Google Scholar 

  • Valentini E, Kikhney AG, Previtali G, Jeffries CM, Svergun DI (2015) SASBDB, a repository for biological small-angle scattering data. Nucleic Acids Res 43:D357–D363

    Article  PubMed  Google Scholar 

  • Weinert U, Pollmann K, Barkleit A, Vogel M, Gunther T, Raff J (2015) Synthesis of S-layer conjugates and evaluation of their modifiability as a tool for the functionalization and patterning of technical surfaces. Molecules 20:9847–9861

    Article  CAS  PubMed  Google Scholar 

  • Whitmore L, Wallace BA (2008) Protein secondary structure analyses from circular dichroism spectroscopy: methods and reference databases. Biopolymers 89:392–400

    Article  CAS  PubMed  Google Scholar 

  • Word N, Yousten A, Howard L (1983) Regularly structured and non-regularly structured surface layers of Bacillus sphaericus. FEMS Microbiol Lett 17:277–282

    Article  Google Scholar 

  • Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinform 9:40

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported by grants from the BMBF Röntgen–Ångström Cluster Project (RAC) under project number 05K12GU3 and by the DFG–Excellence Cluster CUI (Centre for Ultra-Fast Imaging) and Hamburg Ministry of Science and Research via the graduate school DELIGRAH. Jun Liu was assisted by the China Scholarship Council (CSC) via Grant No. 2010629147 and by the Technology Foundation for Selected Overseas Chinese Scholar, Ministry of Personnel of China. Sven Falke, Christian Betzel, and Dmitri Svergun further acknowledge support from a BMBF grant, referring to project number 05K13GU2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Raff.

Additional information

J. Liu and S. Falke contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Falke, S., Drobot, B. et al. Analysis of self-assembly of S-layer protein slp-B53 from Lysinibacillus sphaericus . Eur Biophys J 46, 77–89 (2017). https://doi.org/10.1007/s00249-016-1139-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-016-1139-9

Keywords

Navigation