Skip to main content
Log in

Molecular dynamics study of the effect of active site protonation on Helicobacter pylori 5′-methylthioadenosine/S-adenosylhomocysteine nucleosidase

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

The protein 5′-methylthioadenosine/S-adenosylhomocysteine nucleosidase (MTAN) is involved in the quorum sensing of several bacterial species, including Helicobacter pylori. In particular, these bacteria depend on MTAN for synthesis of vitamin K2 homologs. The residue D198 in the active site of MTAN seems to be of crucial importance, by acting as a hydrogen-bond acceptor for the ligand. In this study, we investigated the conformation and dynamics of apo and holo H. pylori MTAN (HpMTAN), and assessed the effect of protonation of D198 by use of molecular dynamics simulations. Our results show that protonation of the active site of HpMTAN can cause a conformational transition from a closed state to an open state even in the absence of substrate, via inter-chain mechanical coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Appleby TC, Erion MD, Ealick SE (1999) The structure of human 5′-deoxy-5′-methylthioadenosine phosphorylase at 1.7 A resolution provides insights into substrate binding and catalysis. Structure 7:629–641

    Article  CAS  PubMed  Google Scholar 

  • Bao Y, Li Y, Jiang Q, Zhao L, Xue T, Hu B, Sun B (2013) Methylthioadenosine/S-adenosylhomocysteine nucleosidase (Pfs) of Staphylococcus aureus is essential for the virulence independent of LuxS/AI-2 system. Int J Med Microbiol 303:190–200

    Article  CAS  PubMed  Google Scholar 

  • Bardhan PK (1997) Epidemiological features of Helicobacter pylori infection in developing countries. Clin Infect Dis 25:973–978

    Article  CAS  PubMed  Google Scholar 

  • Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126:14101

    Article  Google Scholar 

  • da Silva AS, Vranken W (2012) ACPYPE—AnteChamber PYthon Parser interfacE. BMC Res Notes 5:1–8

    Google Scholar 

  • Darden T, York D, Pedersen L (1993) Particle mesh Ewald—an N.Log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  • Dooley CP, Cohen H, Fitzgibbons PL, Bauer M, Appleman MD, Perezperez GI, Blaser MJ (1989) Prevalence of Helicobacter pylori infection and histologic gastritis in asymptomatic persons. N Engl J Med 321:1562–1566

    Article  CAS  PubMed  Google Scholar 

  • Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. Journal of Chemical Physics 103:8577–8593

    Article  CAS  Google Scholar 

  • Evans GB, Fumeaux RH, Greatrex B, Murkin AS, Schramm VL, Tyler PC (2008) Azetidine based transition state analogue inhibitors of N-ribosyl hydrolases and phosphorylases. J Med Chem 51:948–956

    Article  CAS  PubMed  Google Scholar 

  • Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Laham A, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, Revision C.02

  • Fuqua WC, Winans SC, Greenberg EP (1994) Quorum sensing in bacteria: the LuxR–LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 176:269–275

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gutierrez JA, Luo M, Singh V, Li L, Brown RL, Norris GE, Evans GB, Furneaux RH, Tyler PC, Painter GF, Lenz DH, Schramm VL (2007) Picomolar inhibitors as transition-state probes of 5′-methylthioadenosine nucleosidases. ACS Chem Biol 2:725–734

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez JA, Crowder T, Rinaldo-Matthis A, Ho MC, Almo SC, Schramm VL (2009) Transition state analogs of 5′-methylthioadenosine nucleosidase disrupt quorum sensing. Nat Chem Biol 5:251–257

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Haapalainen AM, Thomas K, Tyler PC, Evans GB, Almo SC, Schramm VL (2013) Salmonella enterica MTAN at 1.36 A resolution: a structure-based design of tailored transition state analogs. Structure 21:963–974

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472

    Article  CAS  Google Scholar 

  • Hiratsuka T, Furihata K, Ishikawa J, Yamashita H, Itoh N, Seto H, Dairi T (2008) An alternative menaquinone biosynthetic pathway operating in microorganisms. Science 321:1670–1673

    Article  CAS  PubMed  Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(33–38):27–38

    Google Scholar 

  • Jakalian A, Jack DB, Bayly CI (2002) Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. J Comput Chem 23:1623–1641

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  • Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22:2577–2637

    Article  CAS  PubMed  Google Scholar 

  • Kashiwagi H (2003) Ulcers and gastritis. Endoscopy 35:9–14

    Article  CAS  PubMed  Google Scholar 

  • Lee JE, Cornell KA, Riscoe MK, Howell PL (2001) Structure of E. coli 5′-methylthioadenosine/S-adenosylhomocysteine nucleosidase reveals similarity to the purine nucleoside phosphorylases. Structure 9:941–953

    Article  CAS  PubMed  Google Scholar 

  • Lee JE, Cornell KA, Riscoe MK, Howell PL (2003) Structure of Escherichia coli 5′-methylthioadenosine/S-adenosylhomocysteine nucleosidase inhibitor complexes provide insight into the conformational changes required for substrate binding and catalysis. J Biol Chem 278:8761–8770

    Article  CAS  PubMed  Google Scholar 

  • Lee JE, Singh V, Evans GB, Tyler PC, Furneaux RH, Cornell KA, Riscoe MK, Schramm VL, Howell PL (2005) Structural rationale for the affinity of pico- and femtomolar transition state analogues of Escherichia coli 5′-methylthioadenosine/S-adenosylhomocysteine nucleosidase. J Biol Chem 280:18274–18282

    Article  CAS  PubMed  Google Scholar 

  • Li X, Apel D, Gaynor EC, Tanner ME (2011) 5′-Methylthioadenosine nucleosidase is implicated in playing a key role in a modified futalosine pathway for menaquinone biosynthesis in Campylobacter jejuni. J Biol Chem 286:19392–19398

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis JL, Dror RO, Shaw DE (2010) Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins 78:1950–1958

    PubMed Central  CAS  PubMed  Google Scholar 

  • Longshaw AI, Adanitsch F, Gutierrez JA, Evans GB, Tyler PC, Schramm VL (2010) Design and synthesis of potent “sulfur-free” transition state analogue inhibitors of 5′-methylthioadenosine nucleosidase and 5′-methylthioadenosine phosphorylase. J Med Chem 53:6730–6746

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marshall BJ, Warren JR (1984) Unidentified curved bacilli in the stomach of patients with gastritis and peptic-ulceration. Lancet 1:1311–1315

    Article  CAS  PubMed  Google Scholar 

  • Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199

    Article  CAS  PubMed  Google Scholar 

  • Mishra V, Ronning DR (2012) Crystal structures of the Helicobacter pylori MTAN enzyme reveal specific interactions between S-adenosylhomocysteine and the 5′-alkylthio binding subsite. Biochemistry 51:9763–9772

    Article  CAS  PubMed  Google Scholar 

  • Mishra V, Ronning DR (2013) Enzyme-substrate interactions in the Helicobacter pylori 5′-methylthioadenosine/S-adenosylhomocysteine nucleosidase. FASEB J 27:560–572

    Google Scholar 

  • Parrinello M, Rahman A (1981) Polymorphic transitions in single-crystals—a new molecular-dynamics method. J Appl Phys 52:7182–7190

    Article  CAS  Google Scholar 

  • Parveen N, Cornell KA (2011) Methylthioadenosine/S-adenosylhomocysteine nucleosidase, a critical enzyme for bacterial metabolism. Mol Microbiol 79:7–20

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Plummer M, Franceschi S, Munoz N (2004) Epidemiology of gastric cancer. IARC Sci Publ 157:311–326

    PubMed  Google Scholar 

  • Pronk S, Pall S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR, Smith JC, Kasson PM, van der Spoel D, Hess B, Lindahl E (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29:845–854

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ronning DR, Iacopelli NM, Mishra V (2010) Enzyme-ligand interactions that drive active site rearrangements in the Helicobacter pylori 5′-methylthioadenosine/S-adenosylhomocysteine nucleosidase. Protein Sci 19:2498–2510

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Salomon-Ferrer R, Case DA, Walker RC (2013) An overview of the Amber biomolecular simulation package. Wiley Interdiscip Rev: Comput Mol Sci 3:198–210

    CAS  Google Scholar 

  • Schrodinger, LLC (2010) The PyMOL Molecular Graphics System, Version 1.3r1

  • Seto H, Jinnai Y, Hiratsuka T, Fukawa M, Furihata K, Itoh N, Dairi T (2008) Studies on a new biosynthetic pathway for menaquinone. J Am Chem Soc 130:5614–5615

    Article  CAS  PubMed  Google Scholar 

  • Singh V, Schramm VL (2007) Transition-state analysis of S-pneumoniae 5′-methylthioadenosine nucleosidase. J Am Chem Soc 129:2783–2795

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sipponen P (1997) Helicobacter pylori gastritiS-epidemiology. J Gastroenterol 32:273–277

    Article  CAS  PubMed  Google Scholar 

  • Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718

    Article  Google Scholar 

  • Wang SZ, Haapalainen AM, Yan FN, Du Q, Tyler PC, Evans GB, Rinaldo-Matthis A, Brown RL, Norris GE, Almo SC, Schramm VL (2012) A picomolar transition state analogue inhibitor of MTAN as a Specific antibiotic for Helicobacter pylori. Biochemistry 51:6892–6894

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang S, Thomas K, Schramm VL (2014) Catalytic site cooperativity in dimeric methylthioadenosine nucleosidase. Biochemistry 53:1527–1535

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wassenaar TA, Quax WJ, Mark AE (2008) The conformation of the extracellular binding domain of death receptor 5 in the presence and absence of the activating ligand TRAIL: a molecular dynamics study. Proteins 70:333–343

    Article  CAS  PubMed  Google Scholar 

  • Wold H (1966) Estimation of principal component and related models by iterative least squares. Multivariate Analysis. Academic Press, New York, pp 391–420

    Google Scholar 

  • Yildirim A, Tekpinar M, Wassenaar TA (2014) Molecular dynamics investigation of Helicobacter pylori chemotactic protein CheY1 and two mutants. J Mol Model 20:2212

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

All calculations reported in this paper were performed at TUBITAK (Turkish Scientific and Technical Research Counsel) ULAKBIM (National Academic Information Center), High Performance and Grid Computing Center (TRUBA Resources). We would like to thank TUBITAK for providing us with these excellent computational resources and service.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Tekpinar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1702 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tekpinar, M., Yildirim, A. & Wassenaar, T.A. Molecular dynamics study of the effect of active site protonation on Helicobacter pylori 5′-methylthioadenosine/S-adenosylhomocysteine nucleosidase. Eur Biophys J 44, 685–696 (2015). https://doi.org/10.1007/s00249-015-1067-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-015-1067-0

Keywords

Navigation