Skip to main content

Advertisement

Log in

Characterizing the Adherence Profiles of Virulent Vibrio parahaemolyticus Isolates

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The human pathogen Vibrio parahaemolyticus is a leading cause of seafood-borne illness in the USA, and infections with V. parahaemolyticus typically result from eating raw or undercooked oysters. V. parahaemolyticus has been shown to be highly resistant to oyster depuration, suggesting that the bacterium possesses specific mechanisms or factors for colonizing oysters and persisting during depuration. In this study, we characterized eight different V. parahaemolyticus strains for differences in resistance to oyster depuration, biofilm formation, and motility. While each strain exhibited distinct phenotypes in the various assays, we determined that biofilm formation on abiotic surfaces, such as glass or plastic, does not directly correlate with bacterial retention in oysters during depuration. However, we did observe that the motility phenotype of a strain appeared to be a better indicator for persistence in the oyster. Further studies examining the molecular mechanisms underlying the observed colonization differences by these and other V. parahaemolyticus strains may provide beneficial insights into what critical factors are required for proficient colonization of the Pacific oyster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Johnson CN, Bowers JC, Griffitt KJ, Molina V, Clostio RW, Pei S, Laws E, Paranjpye RN, Strom MS, Chen A, Hasan NA, Huq A, Noriea 3rd NF, Grimes DJ, Colwell RR (2012) Ecology of Vibrio parahaemolyticus and Vibrio vulnificus in the coastal and estuarine waters of Louisiana, Maryland, Mississippi, and Washington, United States Appl Environ Microb. doi:10.1128/AEM.01296-12

  2. Vieira RH, Costa RA, Menezes FG, Silva GC, Theophilo GN, Rodrigues DP, Maggioni R (2011) Kanagawa-negative, tdh- and trh-positive Vibrio parahaemolyticus isolated from fresh oysters marketed in Fortaleza, Brazil Curr. Microbiol. 63:126–130. doi:10.1007/s00284-011-9945-x

    Article  PubMed  CAS  Google Scholar 

  3. Croci L, Suffredini E, Cozzi L, Toti L (2002) Effects of depuration of molluscs experimentally contaminated with Escherichia coli, Vibrio cholerae 01 and Vibrio parahaemolyticus J. Appl. Microbiol. 92:460–465

    Article  PubMed  Google Scholar 

  4. Kline KA, Falker S, Dahlberg S, Normark S, Henriques-Normark B (2009) Bacterial adhesins in host-microbe interactions Cell Host Microbe 5:580–592. doi:10.1016/j.chom.2009.05.011

    Article  PubMed  CAS  Google Scholar 

  5. Yildiz FH, Visick KL (2009) Vibrio biofilms: so much the same yet so different Trends Microbiol. 17:109–118. doi:10.1016/j.tim.2008.12.004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Althouse C, Patterson S, Fedorka-Cray P, Isaacson RE (2003) Type 1 fimbriae of Salmonella enterica serovar Typhimurium bind to enterocytes and contribute to colonization of swine in vivo Infect. Immun. 71:6446–6452

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Crepin S, Houle S, Charbonneau ME, Mourez M, Harel J, Dozois CM (2012) Decreased expression of type 1 fimbriae by a pst mutant of uropathogenic Escherichia coli reduces urinary tract infection Infect. Immun. 80:2802–2815. doi:10.1128/IAI.00162-12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Aagesen AM, Phuvasate S, Su YC, Häse CC (2013) Persistence of Vibrio parahaemolyticus in the Pacific oyster, Crassostrea gigas, is a multifactorial process involving pili and flagella but not type III secretion systems or phase variation Appl Environ Microb 79:3303–3305. doi:10.1128/Aem.00314-13

    Article  CAS  Google Scholar 

  9. Tarsi R, Pruzzo C (1999) Role of surface proteins in Vibrio cholerae attachment to chitin Appl Environ Microb 65:1348–1351

    CAS  Google Scholar 

  10. Meibom KL, Blokesch M, Dolganov NA, Wu CY, Schoolnik GK (2005) Chitin induces natural competence in Vibrio cholerae Science 310:1824–1827. doi:10.1126/science.1120096

    Article  PubMed  CAS  Google Scholar 

  11. Meibom KL, Li XB, Nielsen AT, Wu CY, Roseman S, Schoolnik GK (2004) The Vibrio cholerae chitin utilization program Proceedings of the National Academy of Sciences U S A 101:2524–2529

    Article  CAS  Google Scholar 

  12. Attridge SR, Manning PA, Holmgren J, Jonson G (1996) Relative significance of mannose-sensitive hemagglutinin and toxin-coregulated pili in colonization of infant mice by Vibrio cholerae El Tor Infect. Immun. 64:3369–3373

    PubMed  PubMed Central  CAS  Google Scholar 

  13. Hsiao A, Liu Z, Joelsson A, Zhu J (2006) Vibrio cholerae virulence regulator-coordinated evasion of host immunity Proceedings of the National Academy of Sciences U S A 103:14542–14547. doi:10.1073/pnas.0604650103

    Article  CAS  Google Scholar 

  14. Paranjpye RN, Strom MS (2005) A Vibrio vulnificus type IV pilin contributes to biofilm formation, adherence to epithelial cells, and virulence Infect. Immun. 73:1411–1422. doi:10.1128/IAI.73.3.1411-1422.2005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Paranjpye RN, Johnson AB, Baxter AE, Strom MS (2007) Role of type IV pilins in persistence of Vibrio vulnificus in Crassostrea virginica oysters Appl Environ Microb 73:5041–5044. doi:10.1128/AEM.00641-07

    Article  CAS  Google Scholar 

  16. Srivastava M, Tucker MS, Gulig PA, Wright AC (2009) Phase variation, capsular polysaccharide, pilus and flagella contribute to uptake of Vibrio vulnificus by the eastern oyster (Crassostrea virginica) Environ. Microbiol. 11:1934–1944. doi:10.1111/j.1462-2920.2009.01916.x

    Article  PubMed  Google Scholar 

  17. Shime-Hattori A, Iida T, Arita M, Park KS, Kodama T, Honda T (2006) Two type IV pili of Vibrio parahaemolyticus play different roles in biofilm formation FEMS Microbiol. Lett. 264:89–97. doi:10.1111/j.1574-6968.2006.00438.x

    Article  PubMed  CAS  Google Scholar 

  18. McFall-Ngai M, Brennan C, Weis V, Lamarcq L (1998) Mannose adhesin-glycan interactions in the Euprymna scolopes-Vibrio fischeri symbiosis. In: Gal L, Halvorson (eds) New Developments in Marine Biotechnology. Plenum Press, New York, pp. 273–280

    Chapter  Google Scholar 

  19. Stabb EV, Ruby EG (2003) Contribution of pilA to competitive colonization of the squid Euprymna scolopes by Vibrio fischeri Appl Environ Microb 69:820–826

    Article  CAS  Google Scholar 

  20. Aagesen AM, Häse CC (2012) Sequence analyses of type IV pili from Vibrio cholerae, Vibrio parahaemolyticus, and Vibrio vulnificus Microbial Ecol 64:509–524. doi:10.1007/s00248-012-0021-2

    Article  CAS  Google Scholar 

  21. McCarter LL (2001) Polar flagellar motility of the Vibrionaceae. Microbiol Mol Biol Rev 65: 445–462, table of contents. doi: 10.1128/MMBR.65.3.445-462.2001

  22. Kirov SM (2003) Bacteria that express lateral flagella enable dissection of the multifunctional roles of flagella in pathogenesis FEMS Microbiol. Lett. 224:151–159

    Article  PubMed  CAS  Google Scholar 

  23. McCarter L, Silverman M (1989) Iron regulation of swarmer cell differentiation of Vibrio parahaemolyticus J. Bacteriol. 171:731–736

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. McCarter L, Silverman M (1990) Surface-induced swarmer cell differentiation of Vibrio parahaemolyticus Mol. Microbiol. 4:1057–1062

    Article  PubMed  CAS  Google Scholar 

  25. Stewart BJ, McCarter LL (2003) Lateral flagellar gene system of Vibrio parahaemolyticus J. Bacteriol. 185:4508–4518. doi:10.1128/Jb.185.15.4508-4518.2003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Gode-Potratz CJ, Kustusch RJ, Breheny PJ, Weiss DS, McCarter LL (2011) Surface sensing in Vibrio parahaemolyticus triggers a programme of gene expression that promotes colonization and virulence Mol. Microbiol. 79:240–263. doi:10.1111/J.1365-2958.2010.07445.X

    Article  PubMed  CAS  Google Scholar 

  27. McCarter LL (2004) Dual flagellar systems enable motility under different circumstances J Mol Microb Biotech 7:18–29. doi:10.1159/000077866

    Article  CAS  Google Scholar 

  28. Kawagishi I, Imagawa M, Imae Y, McCarter L, Homma M (1996) The sodium-driven polar flagellar motor of marine Vibrio as the mechanosensor that regulates lateral flagellar expression Mol. Microbiol. 20:693–699

    Article  PubMed  CAS  Google Scholar 

  29. Jaques S, McCarter LL (2006) Three new regulators of swarming in Vibrio parahaemolyticus J. Bacteriol. 188:2625–2635. doi:10.1128/Jb.188.7.2625-2635.2006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Enos-Berlage JL, Guvener ZT, Keenan CE, McCarter LL (2005) Genetic determinants of biofilm development of opaque and translucent Vibrio parahaemolyticus Mol. Microbiol. 55:1160–1182. doi:10.1111/j.1365-2958.2004.04453.x

    Article  PubMed  CAS  Google Scholar 

  31. Phuvasate S, Chen MH, Su YC (2012) Reductions of Vibrio parahaemolyticus in Pacific oysters (Crassostrea gigas) by depuration at various temperatures Food Microbiol. 31:51–56. doi:10.1016/J.Fm.2012.02.004

    Article  PubMed  Google Scholar 

  32. Chae MJ, Cheney D, Su YC (2009) Temperature effects on the depuration of Vibrio parahaemolyticus and Vibrio vulnificus from the American oyster (Crassostrea virginica) J. Food Sci. 74:M62–M66. doi:10.1111/J.1750-3841.2008.01031.X

    Article  PubMed  CAS  Google Scholar 

  33. Chiu TH, Duan J, Su YC (2007) Characteristics of virulent Vibrio parahaemolyticus isolated from Oregon and Washington J Food Protect 70:1011–1016

    Article  CAS  Google Scholar 

  34. Gonzalez-Escalona N, Martinez-Urtaza J, Romero J, Espejo RT, Jaykus LA, DePaola A (2008) Determination of molecular phylogenetics of Vibrio parahaemolyticus strains by multilocus sequence typing J. Bacteriol. 190:2831–2840. doi:10.1128/JB.01808-07

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Martinez-Urtaza J, Lozano-Leon A, DePaola A, Ishibashi M, Shimada K, Nishibuchi M, Liebana E (2004) Characterization of pathogenic Vibrio parahaemolyticus isolates from clinical sources in Spain and comparison with Asian and North American pandemic isolates J. Clin. Microbiol. 42:4672–4678. doi:10.1128/JCM.42.10.4672-4678.2004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Duan JY, Su YC (2005) Occurrence of Vibrio parahaemolyticus in two oregon oyster-growing bays J. Food Sci. 70:M58–M63

    Article  CAS  Google Scholar 

  37. Phuvasate S, Su YC (2013) Impact of water salinity and types of oysters on depuration for reducing Vibrio parahaemolyticus in Pacific oysters (Crassostrea gigas) Food Control 32:569–573. doi:10.1016/j.foodcont.2013.01.025

    Article  CAS  Google Scholar 

  38. Aagesen AM, Häse CC (2014) Seasonal effects of heat shock on bacterial populations, including artificial Vibrio parahaemolyticus exposure, in the Pacific oyster, Crassostrea gigas Food Microbiol. 38:93–103. doi:10.1016/J.Fm.2013.08.008

    Article  PubMed  Google Scholar 

  39. Kaysner CA, DePaola A (2004) Bacteriological Analytical Manual: Vibrio. U.S. Food and Drug Administration

  40. Devulder G, de Montclos MP, Flandrois JP (2005) A multigene approach to phylogenetic analysis using the genus Mycobacterium as a model Int J Syst Evol Micr 55:293–302. doi:10.1099/ijs.0.63222-0

    Article  CAS  Google Scholar 

  41. Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial-DNA in humans and chimpanzees Mol. Biol. Evol. 10:512–526

    PubMed  CAS  Google Scholar 

  42. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets Mol. Biol. Evol. 33:1870–1874. doi:10.1093/molbev/msw054

    Article  PubMed  CAS  Google Scholar 

  43. Boles BR, McCarter LL (2002) Vibrio parahaemolyticus scrABC, a novel operon affecting swarming and capsular polysaccharide regulation J. Bacteriol. 184:5946–5954. doi:10.1128/Jb.184.21.5946-5954.2002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Kim YK, McCarter LL (2004) Cross-regulation in Vibrio parahaemolyticus: compensatory activation of polar flagellar genes by the lateral flagellar regulator LafK J. Bacteriol. 186:4014–4018. doi:10.1128/Jb.186.12.4014-4018.2004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Abdallah FB, Chaieb K, Zmantar T, Kallel H, Bakhrouf A (2009) Adherence assays and slime production of Vibrio alginolyticus and Vibrio parahaemolyticus Braz. J. Microbiol. 40:394–398

    Article  PubMed  PubMed Central  Google Scholar 

  46. Tomaras AP, Dorsey CW, Edelmann RE, Actis LA (2003) Attachment to and biofilm formation on abiotic surfaces by Acinetobacter baumannii: involvement of a novel chaperone-usher pili assembly system Microbiology 149:3473–3484. doi:10.1099/Mic.0.26541-0

    Article  PubMed  CAS  Google Scholar 

  47. Love DC, Lovelace GL, Sobsey MD (2010) Removal of Escherichia coli, Enterococcus fecalis, coliphage MS2, poliovirus, and hepatitis A virus from oysters (Crassostrea virginica) and hard shell clams (Mercinaria mercinaria) by depuration Int. J. Food Microbiol. 143:211–217. doi:10.1016/j.ijfoodmicro.2010.08.028

    Article  PubMed  CAS  Google Scholar 

  48. Marino A, Crisafi G, Maugeri TL, Nostro A, Alonzo V (1999) Uptake and retention of Vibrio cholerae non-O1, Salmonella typhi, Escherichia coli and Vibrio harvey by mussels in seawater New Microbiology 22:129–138

    CAS  Google Scholar 

  49. Marino A, Lombardo L, Fiorentino C, Orlandella B, Monticelli L, Nostro A, Alonzo V (2005) Uptake of Escherichia coli, Vibrio cholerae non-O1 and Enterococcus durans by, and depuration of mussels (Mytilus galloprovincialis) Int. J. Food Microbiol. 99:281–286. doi:10.1016/j.ijfoodmicro.2004.09.003

    Article  PubMed  Google Scholar 

  50. Mueller RS, McDougald D, Cusumano D, Sodhi N, Kjelleberg S, Azam F, Bartlett DH (2007) Vibrio cholerae strains possess multiple strategies for abiotic and biotic surface colonization J. Bacteriol. 189:5348–5360. doi:10.1128/JB.01867-06

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Snoussi M, Noumi E, Cheriaa J, Usai D, Sechi LA, Zanetti S, Bakhrouf A (2008) Adhesive properties of environmental Vibrio alginolyticus strains to biotic and abiotic surfaces New Microbiol. 31:489–500

    PubMed  CAS  Google Scholar 

  52. McQueary CN, Actis LA (2011) Acinetobacter baumannii biofilms: variations among strains and aorrelations with other cell properties J. Microbiol. 49:243–250. doi:10.1007/S12275-011-0343-7

    Article  PubMed  CAS  Google Scholar 

  53. Watnick PI, Fullner KJ, Kolter R (1999) A role for the mannose-sensitive hemagglutinin in biofilm formation by Vibrio cholerae El Tor J. Bacteriol. 181:3606–3609

    PubMed  PubMed Central  CAS  Google Scholar 

  54. Chiavelli DA, Marsh JW, Taylor RK (2001) The mannose-sensitive hemagglutinin of Vibrio cholerae promotes adherence to zooplankton Appl Environ Microb 67:3220–3225. doi:10.1128/AEM.67.7.3220-3225.2001

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Linda McCarter for kindly providing the opaque, translucent, and non-motile V. parahaemolyticus strains and the Oregon Oyster Farm (Newport, OR) for providing the animals used in this study. This study was funded by the National Research Initiative Food Safety and Epidemiology Program (32.0A) Grant No. 2008–35201–04580 and the Agriculture and Food Research Initiative Grant No. 2011-68003-30005 of the USDA National Institute of Food and Agriculture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia C. Häse.

Additional information

Dr. Yi-Cheng Su passed away December 5, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aagesen, A.M., Phuvasate, S., Su, YC. et al. Characterizing the Adherence Profiles of Virulent Vibrio parahaemolyticus Isolates. Microb Ecol 75, 152–162 (2018). https://doi.org/10.1007/s00248-017-1025-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-017-1025-8

Keywords

Navigation