Skip to main content
Log in

Fungal Endophytes: an Alternative Source for Production of Volatile Compounds from Agarwood Oil of Aquilaria subintegra

  • Fungal Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Fungal endophytes are microorganisms that are well-known for producing a diverse array of secondary metabolites. Recent studies have uncovered the bioprospecting potential of several plant endophytic fungi. Here, we demonstrate the presence of highly bioactive fungal endophytic species in Aquilaria subintegra, a fragrant wood plant collected from Thailand. Thirty-three fungal endophytic strains were isolated and further identified to genus level based on morphological characteristics. These genera included Colletotrichum, Pestalotiopsis, Fusarium, Russula, Arthrinium, Diaporthe and Cladosporium. All strains were cultured on potato dextrose broth for 30 days prior to partitioning with ethyl acetate. The volatile compounds of all extracts were investigated by gas chromatography-mass spectrometry (GC-MS). Four strains—Arthrinium sp. MFLUCC16–0042, Colletotrichum sp. MFLUCC16-0047, Colletotrichum sp. MFLUCC16-0048 and Diaporthe sp. MFLUCC16-0051—produced a broad spectrum of volatile compounds, including β-agarofuran, α-agarofuran, δ-eudesmol, oxo-agarospirol, and β-dihydro agarofuran. These compounds are especially important, because they greatly resemble those originating from the host-produced agarwood oil. Our findings demonstrate the potential of endophytic fungi to produce bioactive compounds with applications in perfumery and cosmetic industries. Antioxidant activity of all extracts was also evaluated by using 2,2-diphenyl-2-picrylhydrazyl radical scavenging assays. The ethyl acetate extract of Diaporthe sp. MFLUCC16-0051 demonstrated superior antioxidant capacity, which was comparable to that of the gallic acid standard. Our results indicate that the MFLUCC16-0051 strain is a resource of natural antioxidant with potential medicinal applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Yoswathana N (2013) Extraction of agarwood (Aquilaria crassna) oil by using supercritical carbon dioxide extraction and enzyme pretreatment on hydrodistillation. J Food Agric Environ 11:1055–1059

    Google Scholar 

  2. Xu Y, Zhang Z, Wang M, Wei J, Chen H, Gao Z, Sui C, Luo H, Zhang X, Yang Y, Meng H, Li W (2013) Identification of genes related to agarwood formation: transcriptome analysis of healthy and wounded tissues of Aquilaria sinensis. BMC Genomics 14:227–242. doi:10.1186/1471-2164-14-227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Akter S, Islam MT, Zulkefeli M, Khan SI (2013) Agarwood production-a multidisciplinary field to be explored in Bangladesh. IJPLS 2:22–32. doi:10.3329/ijpls.v2i1.15132

    Google Scholar 

  4. Naef R (2011) The volatile and semi-volatile constituents of agarwood, the infected heartwood of Aquilaria species: a review. Fla Fragr J 26:73–87. doi:10.1002/ffj.2034

    Article  CAS  Google Scholar 

  5. Zhang Z, Wei J, Han X, Liang L, Yang Y, Meng H, Xu Y, Gao Z (2014) The sesquiterpene biosynthesis and vessel-occlusion formation in stems of Aquilaria sinensis (Lour.) Gilg trees induced by wounding treatments without variation of microbial communities. Int. J. Mol. Sci. 15:23589–23603. doi:10.3390/ijms151223589

    Article  PubMed  PubMed Central  Google Scholar 

  6. Pripdeevech P, Khummueng W, Park SK (2011) Identification of odor-active components of agarwood essential oils from Thailand by solid phase microextraction-GC/MS and GC-O. J. Essent. Oil Res. 23:46–53. doi:10.1080/10412905.2011.9700468

    Article  CAS  Google Scholar 

  7. Kakino M, Tazawa S, Maruyama H, Tsuruma K, Araki Y, Shimazawa M, Hara H (2010) Laxative effects of agarwood on low-fiber diet-induced constipation in rats. BMC Complement. Altern. Med. 10:68–75. doi:10.1186/1472-6882-10-68

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zhao J, Zhou L, Wang J, Shan T, Zhong L, Liu X, Gao X (2010) Endophytic fungi for producing bioactive compounds originally from their host plants. Current research, technology and education topics in applied microbiology and microbial biotechnology 1:567–576

    Google Scholar 

  9. Aly AH, Debbab A, Kjer J, Proksch P (2010) Fungal endophytes from higher plants: a prolific source of phytochemicals and other bioactive natural products. Fungal Divers. 41:1–16. doi:10.1007/s13225-010-0034-4

    Article  Google Scholar 

  10. Clay K, Schardl C (2002) Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. Am. Nat. 160(S4):S99–S127

    Article  PubMed  Google Scholar 

  11. Stone JK, Bacon CW, White J (2000) An overview of endophytic microbes: endophytism defined. Microbial endophytes 3:29–33

    Google Scholar 

  12. Bitas V, Kim HS, Bennett JW, Kang S (2013) Sniffing on microbes: diverse roles of microbial volatile organic compounds in plant health. MPMI 26:835–843. doi:10.1094/MPMI-10-12-0249-CR

    Article  CAS  PubMed  Google Scholar 

  13. Strobel G, Daisy B, Castillo U, Harper J (2004) Natural products from endophytic microorganisms. J. Nat. Prod. 67:257–268. doi:10.1021/np030397v

    Article  CAS  PubMed  Google Scholar 

  14. Schaible GA, Strobel GA, Mends MT, Geary B, Sears J (2015) Characterization of an endophytic Gloeosporium sp. and its novel bioactivity with “synergistans”. Microb. Ecol. 70:41–50. doi:10.1007/s00248-014-0542-y

    Article  CAS  PubMed  Google Scholar 

  15. Wibowo M, Prachyawarakorn V, Aree T, Wiyakrutta S, Mahidol C, Ruchirawat S, Kittakoop P (2014) Tricyclic and spirobicyclic norsesquiterpenes from the endophytic fungus Pseudolagarobasidium acaciicola. Eur. J. Org. Chem. 19:3976–3980. doi:10.1002/ejoc.201402262

    Article  Google Scholar 

  16. Gao FK, Dai CC, Liu XZ (2010) Mechanisms of fungal endophytes in plant protection against pathogens. African J Microbiol Res 4:1346–1351

    Google Scholar 

  17. Strobel G, Singh SK, Riyaz-Ul-Hassan S, Mitchell AM, Geary B, Sears J (2011) An endophytic/pathogenic Phoma sp. from creosote bush producing biologically active volatile compounds having fuel potential. FEMS Microbiol. Lett. 320:87–94. doi:10.1111/j.1574-6968.2011.02297.x

    Article  CAS  PubMed  Google Scholar 

  18. Mends MT, Yu E, Strobel GA, Riyaz-Ul-Hassan S, Booth E, Geary B, Sears J, Taatjes CA, Hadi MZ (2012) An endophytic Nodulisporium sp. producing volatile organic compounds having bioactivity and fuel potential. J Phylogenetics Evol Biol 3:117–123. doi:10.4172/2157-7463.1000117

    CAS  Google Scholar 

  19. Gunatilaka AL (2006) Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity, and implications of their occurrence. J. Nat. Prod. 69:509–526. doi:10.1021/np058128n

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schulz B, Boyle C, Draeger S, Römmert AK, Krohn K (2002) Endophytic fungi: a source of novel biologically active secondary metabolites. doi:10.1017/S0953756202006342

  21. Verma VC, Kharwar RN, Strobel GA (2009) Chemical and functional diversity of natural products from plant associated endophytic fungi. Nat. Prod. Commun. 4:1511–1532

    CAS  PubMed  Google Scholar 

  22. Dugan FM (2006) The identification of fungi: an illustrated introduction with keys, glossary, and guide to literature. American Phytopathological Society, Minnesota, pp. 1–176

    Google Scholar 

  23. Pripdeevech P, Machan T (2011) Fingerprint of volatile flavour constituents and antioxidant activities of teas from Thailand. Food Chem. 125:797–802. doi:10.1016/j.foodchem.2010.09.074

    Article  CAS  Google Scholar 

  24. Katoh K, Toh H (2010) Parallelization of the MAFFT multiple sequence alignment program. Bioinformatics 26:1899–1900. doi:10.1093/bioinformatics/btq224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Katoh K, Misawa K, Kuma KI, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30:3059–3066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T (2008) trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25:1972–1973. doi:10.1093/bioinformatics/btp348

    Article  Google Scholar 

  27. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690. doi:10.1093/bioinformatics/btl446

    Article  CAS  PubMed  Google Scholar 

  28. Schoch CL, Robbertse B, Robert V et al. (2014) Finding needles in haystacks: linking scientific names, reference specimens and molecular data for Fungi. Database (Oxford):1–21. doi:10.1093/database/bau061

  29. Ronquist F, Huelsenbeck JP (2003) MrBayes3, Bayesian inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  30. Miller MA, Pfeiffer W, Schwartz T (2010) “Creating the CIPRES science gateway for inference of large phylogenetic trees” in proceedings of the Gateway Computing Environments Workshop (GCE), New Orleans, pp 1–8

  31. Shu-Yuan Q (1995) Aquilaria species: in vitro culture and the production eaglewood (agarwood). Springer, Medicinal and Aromatic Plants VIII, pp. 36–46

    Google Scholar 

  32. Nakanishi T, Yamagata E, Yoneda K, Nagashima T, Kawasaki I, Yoshida T, Mori H, Miura I (1984) Three fragrant sesquiterpenes of agarwood. Phytochemistry 23:2066–2067. doi:10.1016/S0031-9422(00)84975-4

    Article  CAS  Google Scholar 

  33. Wong YF, Chin ST, Perlmutter P, Marriott PJ (2015) Evaluation of comprehensive two-dimensional gas chromatography with accurate mass time-of-flight mass spectrometry for the metabolic profiling of plant–fungus interaction in Aquilaria malaccensis. J. Chromatogr. A 1387:104–115. doi:10.1016/j.chroma.2015.01.096

    Article  CAS  PubMed  Google Scholar 

  34. Ismail N, Azah MAN, Jamil M, Rahiman MHF, Tajuddin SN, Taib MN (2013) Analysis of high quality agarwood oil chemical compounds by means of SPME/GC-MS and Z-score technique. Malaysian J Anal Sci 17:403–413

    Google Scholar 

  35. Takemoto H, Ito M, Shiraki T, Yagura T, Honda G (2008) Sedative effects of vapor inhalation of agarwood oil and spikenard extract and identification of their active components. J. Nat. Med. 62:41–46. doi:10.1007/s11418-007-0177-0

    Article  CAS  PubMed  Google Scholar 

  36. Kusari S, Verma VC, Lamshoeft M, Spiteller M (2012) An endophytic fungus from Azadirachta indica A. Juss. That produces azadirachtin. World J. Microbiol. Biotechnol. 28:1287–1294. doi:10.1007/s11274-011-0876-2

    Article  CAS  PubMed  Google Scholar 

  37. Zhaxybayeva O, Doolittle WF (2011) Lateral gene transfer. Curr. Biol. 21:R242–R246. doi:10.1016/j.cub.2011.01.045

    Article  CAS  PubMed  Google Scholar 

  38. Bömke C, Tudzynski B (2009) Diversity, regulation, and evolution of the gibberellin biosynthetic pathway in fungi compared to plants and bacteria. Phytochemistry 70:1876–1893. doi:10.1016/j.phytochem.2009.05.020

    Article  PubMed  Google Scholar 

  39. Singh G, Maurya S, Catalan C, De Lampasona M (2005) Studies on essential oils, Part 42: chemical, antifungal, antioxidant and sprout suppressant studies on ginger essential oil and its oleoresin. Flav Fragr J 20:1–6. doi:10.1002/ffj.1373

    Article  Google Scholar 

  40. Pripdeevech P, Chukeatirote E (2010) Chemical compositions, antifungal and antioxidant activities of essential oil and various extracts of Melodorum fruticosum L. flowers. Food Chem. Toxicol. 48:2754–2758. doi:10.1016/j.fct.2010.07.002

    Article  CAS  PubMed  Google Scholar 

  41. Sacchetti G, Maietti S, Muzzoli M, Scaglianti M, Manfredini S, Radice M, Bruni R (2005) Comparative evaluation of 11 essential oils of different origin as functional antioxidants, antiradicals and antimicrobials in foods. Food Chem. 91:621–632

    Article  CAS  Google Scholar 

  42. Adams RP (2007) Identification of essential oil components by gas chromatography/mass spectrometry, 4th edn. Allured Publishing Corporation, Illinois

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from Mae Fah Luang University. We are grateful to the Scientific and Technological Instruments Center and Tea Institute, Mae Fah Luang University for a PhD Research instruments and reagents. The authors wish to acknowledge Dr. Putarak Chomnunti and Dr. Saranyaphat Boonmee, of the Institute of Excellence in Fungal Research, School of Science, Mae Fah Luang University who provided assistance towards the success of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patcharee Pripdeevech.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monggoot, S., Popluechai, S., Gentekaki, E. et al. Fungal Endophytes: an Alternative Source for Production of Volatile Compounds from Agarwood Oil of Aquilaria subintegra . Microb Ecol 74, 54–61 (2017). https://doi.org/10.1007/s00248-016-0908-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-016-0908-4

Keywords

Navigation