Skip to main content

Advertisement

Log in

Distribution and Abundance of Hopanoid Producers in Low-Oxygen Environments of the Eastern Pacific Ocean

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Hopanoids are bacterial membrane lipid biomarker molecules that feature prominently in the molecular fossil record. In the modern marine water column, recent reports implicate bacteria inhabiting low-oxygen environments as important sources of hopanoids to marine sediments. However, the preliminary biogeography reported by recent studies and the environmental conditions governing such distributions can only be confirmed when the numerical abundance of these organisms is known with more certainty. In this study, we employ two different approaches to examine the quantitative significance of phylogenetically distinct hopanoid producers in low-oxygen environments. First, we develop a novel quantitative PCR (qPCR) assay for the squalene hopene cyclase (sqhC) gene, targeting a subset of hopanoid producers previously identified to be important in the eastern North Pacific Ocean. The results represent the first quantitative gene abundance data of any kind for hopanoid producers in the marine water column and show that these putative alphaproteobacterial hopanoid producers are rare, comprising at most 0.2 % of the total bacterial community in our samples. Second, a complementary analysis of existing low-oxygen metagenomic datasets further examined the generality of the qPCR observation. We find that the dominant sqhC sequences in these metagenomic datasets are associated with phyla such as Nitrospinae rather than Proteobacteria, consistent with the qPCR finding that alphaproteobacterial hopanoid producers are not very abundant in low-oxygen environments. In fact, positive correlations between sqhC gene abundance and environmental parameters in these samples identify nitrite availability as a potentially important factor in the ecology of hopanoid producers that dominate low-oxygen environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Further information on the Line P program can be found on the program website at: http://www.pac.dfo-mpo.gc.ca/science/oceans/data-donnees/line-p/index-eng.html

References

  1. Brocks JJ, Pearson A (2005) Building the biomarker tree of life. Rev Mineral Geochem 59:233–258. doi:10.2138/rmg.2005.59.10

    Article  CAS  Google Scholar 

  2. Berndmeyer C, Thiel V, Schmale O, Blumenberg M (2013) Biomarkers for aerobic methanotrophy in the water column of the stratified Gotland Deep (Baltic Sea). Org Geochem 55:103–111. doi:10.1016/j.orggeochem.2012.11.010

    Article  CAS  Google Scholar 

  3. Blumenberg M, Berndmeyer C, Moros M, Muschalla M, Schmale O, Thiel V (2013) Bacteriohopanepolyols record stratification, nitrogen fixation and other biogeochemical perturbations in Holocene sediments of the central Baltic Sea. Biogeosciences 10:2725–2735. doi:10.5194/bg-10-2725-2013

    Article  CAS  Google Scholar 

  4. Sáenz JP, Wakeham SG, Eglinton TI, Summons RE (2011) New constraints on the provenance of hopanoids in the marine geologic record: Bacteriohopanepolyols in marine suboxic and anoxic environments. Org Geochem 42:1351–1362. doi:10.1016/j.orggeochem.2011.08.016

    Article  Google Scholar 

  5. Wakeham SG, Amann R, Freeman KH, Hopmans EC, Jørgensen BB, Putnam IF, Schouten S, Sinninghe Damsté JS, Talbot HM, Woebken D (2007) Microbial ecology of the stratified water column of the Black Sea as revealed by a comprehensive biomarker study. Org Geochem 38:2070–2097. doi:10.1016/j.orggeochem.2007.08.003

    Article  CAS  Google Scholar 

  6. Berndmeyer C, Thiel V, Schmale O, Wasmund N, Blumenberg M (2014) Biomarkers in the stratified water column of the Landsort Deep (Baltic Sea). Biogeosci Discuss 11:9853–9887. doi:10.5194/bgd-11-9853-2014

    Article  Google Scholar 

  7. Kharbush JJ, Ugalde JA, Hogle SL, Allen EE, Aluwihare LI (2013) Composite bacterial hopanoids and their microbial producers across oxygen gradients in the water column of the California Current. Appl Environ Microbiol 79:7491–7501. doi:10.1128/AEM.02367-13

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Rush D, Sinninghe Damsté JS, Poulton SW, Thamdrup B, Garside AL, Acuña González J, Schouten S, Jetten MSM, Talbot HM (2014) Anaerobic ammonium-oxidising bacteria: a biological source of the bacteriohopanetetrol stereoisomer in marine sediments. Geochim Cosmochim Acta 140:50–64. doi:10.1016/j.gca.2014.05.014

    Article  CAS  Google Scholar 

  9. Pearson A, Leavitt WD, Sáenz JP, Summons RE, Tam MC-M, Close HG (2009) Diversity of hopanoids and squalene-hopene cyclases across a tropical land-sea gradient. Environ Microbiol 11:1208–1223. doi:10.1111/j.1462-2920.2008.01817.x

    Article  CAS  PubMed  Google Scholar 

  10. Pearson A, Rusch DB (2009) Distribution of microbial terpenoid lipid cyclases in the global ocean metagenome. ISME J 3:352–363. doi:10.1038/ismej.2008.116

    Article  CAS  PubMed  Google Scholar 

  11. Taylor KA, Harvey HR (2011) Bacterial hopanoids as tracers of organic carbon sources and processing across the western Arctic continental shelf. Org Geochem 42:487–497. doi:10.1016/j.orggeochem.2011.03.012

    Article  CAS  Google Scholar 

  12. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780. doi:10.1093/molbev/mst010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Fischer WW, Pearson A (2007) Hypotheses for the origin and early evolution of triterpenoid cyclases. Geobiology 5:19–34. doi:10.1111/j.1472-4669.2007.00096.x

    CAS  Google Scholar 

  14. Hoshino T, Sato T (2002) Squalene-hopene cyclase: catalytic mechanism and substrate recognition. Chem Commun :291–301. doi: 10.1039/b108995c

  15. Allen AE, Booth MG, Verity PG, Frischer ME (2005) Influence of nitrate availability on the distribution and abundance of heterotrophic bacterial nitrate assimilation genes in the Barents Sea during summer. Aquat Microb Ecol 39:247–255. doi:10.3354/ame039247

    Article  Google Scholar 

  16. Pearson A, Flood Page SR, Jorgenson TL, Fischer WW, Higgins MB (2007) Novel hopanoid cyclases from the environment. Environ Microbiol 9:2175–2188. doi:10.1111/j.1462-2920.2007.01331.x

    Article  CAS  PubMed  Google Scholar 

  17. Cho BC, Azam F (1988) Major role of bacteria in biogeochemical fluxes in the ocean’s interior. Nature 332:441–443

    Article  CAS  Google Scholar 

  18. Pedler BE, Aluwihare LI, Azam F (2014) Single bacterial strain capable of significant contribution to carbon cycling in the surface ocean. Proc Natl Acad Sci U S A 111:7202–7207. doi:10.1073/pnas.1401887111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Goericke R, Bograd SJ, Grundle DS (2015) Denitrification and flushing of the Santa Barbara Basin bottom waters. Deep-Sea Res II Top Stud Oceanogr 112:53–60. doi:10.1016/j.dsr2.2014.07.012

    Article  CAS  Google Scholar 

  20. Lücker S, Nowka B, Rattei T, Spieck E, Daims H (2013) The genome of Nitrospina gracilis illuminates the metabolism and evolution of the major marine nitrite oxidizer. Front Microbiol 4:27. doi:10.3389/fmicb.2013.00027

    Article  PubMed Central  PubMed  Google Scholar 

  21. Hawley AK, Brewer HM, Norbeck AD, Pasa-Tolic L, Hallam SJ (2014) Metaproteomics reveals differential modes of metabolic coupling among ubiquitous oxygen minimum zone microbes. Proc Natl Acad Sci 111:11395–11400. doi:10.1073/pnas.1322132111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Wright JJ, Konwar KM, Hallam SJ (2012) Microbial ecology of expanding oxygen minimum zones. Nat Rev Microbiol 10:381–394. doi:10.1038/nrmicro2778

    CAS  PubMed  Google Scholar 

  23. Füssel J, Lam P, Lavik G, Jensen MM, Holtappels M, Günter M, Kuypers MM (2012) Nitrite oxidation in the Namibian oxygen minimum zone. ISME J 6:1200–1209. doi:10.1038/ismej.2011.178

    Article  PubMed Central  PubMed  Google Scholar 

  24. Beman JM, Shih JL, Popp BN (2013) Nitrite oxidation in the upper water column and oxygen minimum zone of the eastern tropical North Pacific Ocean. ISME J 7:2192–2205. doi:10.1038/ismej.2013.96

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Thamdrup B, Dalsgaard T, Revsbech NP (2012) Widespread functional anoxia in the oxygen minimum zone of the Eastern South Pacific. Deep-Sea Res I Oceanogr Res Pap 65:36–45. doi:10.1016/j.dsr.2012.03.001

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. William Haskell (University of Southern California) and the Up.R.I.S.E.E. sampling program for assisting in the collection of the sample from the San Pedro Basin and Dr. Alex Sessions (Cal-Tech) for providing the sediment sample from the Santa Barbara Basin. We thank Dr. Brian Palenik and Dr. Eric Allen at Scripps Institution of Oceanography for the use of lab space and instrumentation and for many helpful discussions. This work was funded by the National Science Foundation Graduate Research Fellowship Program, and the University of California San Diego’s UC Ship Funds program supported the 2010 Cal-ECHOES cruise.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jenan J. Kharbush.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 150 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kharbush, J.J., Kejriwal, K. & Aluwihare, L.I. Distribution and Abundance of Hopanoid Producers in Low-Oxygen Environments of the Eastern Pacific Ocean. Microb Ecol 71, 401–408 (2016). https://doi.org/10.1007/s00248-015-0671-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-015-0671-y

Keywords

Navigation