Skip to main content

Advertisement

Log in

Comparison of the Diversity of Basidiomycetes from Dead Wood of the Manchurian fir (Abies holophylla) as Evaluated by Fruiting Body Collection, Mycelial Isolation, and 454 Sequencing

  • Fungal Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

An Erratum to this article was published on 30 August 2015

Abstract

In this study, three different methods (fruiting body collection, mycelial isolation, and 454 sequencing) were implemented to determine the diversity of wood-inhabiting basidiomycetes from dead Manchurian fir (Abies holophylla). The three methods recovered similar species richness (26 species from fruiting bodies, 32 species from mycelia, and 32 species from 454 sequencing), but Fisher’s alpha, Shannon-Wiener, Simpson’s diversity indices of fungal communities indicated fruiting body collection and mycelial isolation displayed higher diversity compared with 454 sequencing. In total, 75 wood-inhabiting basidiomycetes were detected. The most frequently observed species were Heterobasidion orientale (fruiting body collection), Bjerkandera adusta (mycelial isolation), and Trichaptum fusco-violaceum (454 sequencing). Only two species, Hymenochaete yasudae and Hypochnicium karstenii, were detected by all three methods. This result indicated that Manchurian fir harbors a diverse basidiomycetous fungal community and for complete estimation of fungal diversity, multiple methods should be used. Further studies are required to understand their ecology in the context of forest ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Allmér J, Vasiliauskas R, Ihrmark K, Stenlid J, Dahlberg A (2005) Wood‐inhabiting fungal communities in woody debris of Norway spruce (Picea abies (L.) Karst.), as reflected by sporocarps, mycelial isolations and T‐RFLP identification. FEMS Microbiol Ecol 55:57–67

    Article  Google Scholar 

  2. Asiegbu FO, Adomas A, Stenlid J (2005) Conifer root and butt rot caused by Heterobasidion annosum (Fr.) Bref. s.l. Mol Plant Pathol 6:395–409

    Article  PubMed  Google Scholar 

  3. Bader P, Jansson S, Jonsson BG (1995) Wood-inhabiting fungi and substratum decline in selectively logged boreal spruce forests. Biol Conserv 72:355–362

    Article  Google Scholar 

  4. Blaalid R, Kumar S, Nilsson RH, Abarenkov K, Kirk PM, Kauserud H (2013) ITS1 versus ITS2 as DNA metabarcodes for fungi. Mol Ecol Resour 13:218–224

    Article  CAS  PubMed  Google Scholar 

  5. Boddy L (2001) Fungal community ecology and wood decomposition processes in angiosperms: from standing tree to complete decay of coarse woody debris. Ecol Bull 49:43–56

    Google Scholar 

  6. Bollen GJ, Fuchs A (1970) On the specificity of the in vitro and in vivo antifungal activity of benomyl. Neth J Plant Pathol 76:299–312

    Article  CAS  Google Scholar 

  7. Buée M, Reich M, Murat C, Morin E, Nilsson RH, Uroz S, Martin F (2009) 454 pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytol 184:449–456

    Article  PubMed  Google Scholar 

  8. Chen C-J, Oberwinkler F, Chen Z-C (1999) Tremella occultifuroidea sp. nov., a new mycoparasite of Dacrymyces. Mycoscience 40:137–143

    Article  Google Scholar 

  9. Dahllöf I (2002) Molecular community analysis of microbial diversity. Curr Opin Biotechnol 13:213–217

    Article  PubMed  Google Scholar 

  10. Gómez-Hernández M, Williams-Linera G, Guevara R, Lodge DJ (2012) Patterns of macromycete community assemblage along an elevation gradient: options for fungal gradient and metacommunity analyses. Biodivers Conserv 21:2247–2268

    Article  Google Scholar 

  11. Halme P, Kotiaho JS (2012) The importance of timing and number of surveys in fungal biodiversity research. Biodivers Conserv 21:205–219

    Article  Google Scholar 

  12. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:1–9

    Google Scholar 

  13. Heilmann-Clausen J (2001) A gradient analysis of communities of macrofungi and slime moulds on decaying beech logs. Mycol Res 105:575–596

    Article  Google Scholar 

  14. Heilmann-Clausen J, Christensen M (2004) Does size matter?: on the importance of various dead wood fractions for fungal diversity in Danish beech forests. For Ecol Manag 201:105–117

    Article  Google Scholar 

  15. Ihrmark K, Bödeker ITM, Cruz-Martinez K, Friberg H, Kubartová A, Schenck J, Strid Y, Stenlid J, Brandström-Durling M, Clemmensen KE, Lindahl BD (2012) New primers to amplify the fungal ITS2 region—evaluation by 454 sequencing of artificial and natural communities. FEMS Microbiol Ecol 82:666–677

    Article  CAS  PubMed  Google Scholar 

  16. Jang Y, Lee SW, Lim YW, Lee JS, Hattori T, Kim J-J (2013) The genus Wrightoporia in Korea. Mycotaxon 123:335–341

    Article  Google Scholar 

  17. Johannesson H, Stenlid J (1999) Molecular identification of wood-inhabiting fungi in an unmanaged Picea abies forest in Sweden. For Ecol Manag 115:203–211

    Article  Google Scholar 

  18. Jung HS (1994) Floral studies on Korean wood-rotting fungi (II): on the flora of the Aphyllophorales (Basidiomycotina). Korean J Mycol 22:62–99

    Google Scholar 

  19. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Katsuki T, Zhang D, Rushforth K (2013) Abies holophylla. The IUCN Red List of Threatened Species. Version 2014.3. <www.iucnredlist.org>. Downloaded on 22 January 2015

  21. Kebli H, Drouin P, Brais S, Kernaghan G (2011) Species composition of saproxylic fungal communities on decaying logs in the boreal forest. Microb Ecol 61:898–910

    Article  PubMed  Google Scholar 

  22. Kim G-H, Lim YW, Choi Y-S, Kim M-J, Kim J-J (2009) Primary and secondary decay fungi on exposed pine tree logs in the forest. Holzforschung 63:633–638

    CAS  Google Scholar 

  23. Kim G-H, Lim YW, Song Y-S, Kim J-J (2005) Decay fungi from playground wood products in service using 28S rDNA sequence analysis. Holzforschung 59:459–466

    Article  CAS  Google Scholar 

  24. Kim J-J, Kang S-M, Choi Y-S, Kim G-H (2007) Microfungi potentially disfiguring CCA-treated wood. Int Biodeterior Biodegrad 60:197–201

    Article  CAS  Google Scholar 

  25. Kim M-J, Lee H, Choi Y-S, Kim G-H, Huh N-Y, Lee S, Lim YW, Lee S-S, Kim J-J (2010) Diversity of fungi in creosote-treated crosstie wastes and their resistance to polycyclic aromatic hydrocarbons. Anton Leeuw 97:377–387

    Article  CAS  Google Scholar 

  26. Kubartová A, Ottosson E, Dahlberg A, Stenlid J (2012) Patterns of fungal communities among and within decaying logs, revealed by 454 sequencing. Mol Ecol 21:4514–4532

    Article  PubMed  Google Scholar 

  27. Kües U, Liu Y (2000) Fruiting body production in basidiomycetes. Appl Microbiol Biotechnol 54:141–152

    Article  PubMed  Google Scholar 

  28. Lee D-H (2013) Above- and below-ground biomass of Abies holophylla under different stand conditions. Life Sci J 10:751–758

    Google Scholar 

  29. Lee JS, Kim C, Park JY, Ryoo KH, Kim KM, Yoon YG, Jung HS (2004) Unrecorded higher fungi of the Songnisan National Park. Mycobiology 32:68–73

    Article  Google Scholar 

  30. Lee JS, Woo EJ, Oh KH, Kim J-J, Lim YW (2010) The first report of two species of Polyporus (Polyporaceae, Basidiomycota) from South Korea. Korean J Mycol 48:748–753

    Google Scholar 

  31. Li W, Fu L, Niu B, Wu S, Wooley J (2012) Ultrafast clustering algorithms for metagenomic sequence analysis. Brief Bioinform 13:656–668

    Article  PubMed Central  PubMed  Google Scholar 

  32. Lindahl BD, Nilsson RH, Tedersoo L, Abarenkov K, Carlsen T, Kjøller R, Kõljalg U, Pennanen T, Rosendahl S, Stenlid J, Kauserud H (2013) Fungal community analysis by high‐throughput sequencing of amplified markers—a user’s guide. New Phytol 199:288–299

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Lindblad I (1998) Wood‐inhabiting fungi on fallen logs of Norway spruce: relations to forest management and substrate quality. Nord J Bot 18:243–255

    Article  Google Scholar 

  34. Lindner DL, Burdsall HH Jr, Stanosz GR (2006) Species diversity of polyporoid and corticioid fungi in northern hardwood forests with differing management histories. Mycologia 98:195–217

    Article  PubMed  Google Scholar 

  35. Lonsdale D, Pautasso M, Holdenrieder O (2008) Wood-decaying fungi in the forest: conservation needs and management options. Eur J For Res 127:1–22

    Article  Google Scholar 

  36. Maddison D, Maddison W (2005) MacClade 4: analysis of phylogeny and character evolution. Version 4.08. Sinauer Associates, Sunderland

    Google Scholar 

  37. Mello A, Napoli C, Murat C, Morin E, Marceddu G, Bonfante P (2011) ITS-1 versus ITS-2 pyrosequencing: a comparison of fungal populations in truffle grounds. Mycologia 103:1184–1193

    Article  CAS  PubMed  Google Scholar 

  38. Niini SS, Raudaskoski M (1993) Response of ectomycorrhizal fungi to benomyl and nocodazole: growth inhibition and microtubule depolymerization. Mycorrhiza 3:83–91

    Article  CAS  Google Scholar 

  39. Nilsson RH, Larsson K-H, Larsson E, Kõljalg U (2006) Fruiting body-guided molecular identification of root-tip mantle mycelia provides strong indications of ectomycorrhizal associations in two species of Sistotrema (Basidiomycota). Mycol Res 110:1426–1432

    Article  CAS  PubMed  Google Scholar 

  40. Nordén B, Ryberg M, Götmark F, Olausson B (2004) Relative importance of coarse and fine woody debris for the diversity of wood-inhabiting fungi in temperate broadleaf forests. Biol Conserv 117:1–10

    Article  Google Scholar 

  41. Nylander JAA (2004) MrModeltest v2. Evolutionary Biology Center, Uppsala University, Uppsala

    Google Scholar 

  42. Ovaskainen O, Nokso-Koivisto J, Hottola J, Rajala T, Pennanen T, Ali-Kovero H, Miettinen O, Oinonen P, Auvinen P, Paulin L, Larsson K-H, Mäkipää R (2010) Identifying wood-inhabiting fungi with 454 sequencing—what is the probability that BLAST gives the correct species? Fungal Ecol 3:274–283

    Article  Google Scholar 

  43. Ovaskainen O, Schigel D, Ali-Kovero H, Auvinen P, Paulin L, Nordén B, Nordén J (2013) Combining high-throughput sequencing with fruit body surveys reveals contrasting life-history strategies in fungi. ISME 7:1696–1709

    Article  CAS  Google Scholar 

  44. Penttilä R, Siitonen J, Kuusinen M (2004) Polypore diversity in managed and old-growth boreal Picea abies forests in southern Finland. Biol Conserv 117:271–283

    Article  Google Scholar 

  45. Rachmayanti Y, Leinemann L, Gailing O, Finkeldey R (2006) Extraction, amplification and characterization of wood DNA from Dipterocarpaceae. Plant Mol Biol Report 24:45–55

    Article  CAS  Google Scholar 

  46. Rajala T, Paltoniemi M, Pennanen T, Mäkipää R (2012) Fungal community dynamics in relation to substrate quality of decaying Norway spruce (Picea abies [L.] Karst.) logs in boreal forests. FEMS Microbiol Ecol 81:494–505

    Article  CAS  PubMed  Google Scholar 

  47. Rao S, Hyde KD, Pointing SB (2013) Comparison of DNA and RNA, and cultivation approaches for the recovery of terrestrial and aquatic fungi from environmental samples. Curr Microbiol 66:185–191

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Ronquist F, Teslenko M, van der Mark P, Ayres D, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542

    Article  PubMed Central  PubMed  Google Scholar 

  49. Toju H, Tanabe AS, Yamamoto S, Sato H (2012) High-coverage ITS primers for the DNA-based identification of ascomycetes and basidiomycetes in environmental samples. PLoS ONE 7:e40863

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Vainio EJ, Hantula J (2000) Direct analysis of wood-inhabiting fungi using denaturing gradient gel electrophoresis of amplified ribosomal DNA. Mycol Res 104:927–936

    Article  CAS  Google Scholar 

  51. Vasiliauskas R, Stenlid J (1998) Fungi inhabiting stems of Picea abies in a managed stand in Lithuania. For Ecol Manag 109:119–126

    Article  Google Scholar 

  52. Wang CJK, Zabel RA (1990) Identification manual for fungi from utility poles in the eastern United States. Allen Press Inc., Kansas

    Google Scholar 

  53. Worrall JJ (1991) Media for selective isolation of Hymenomycetes. Mycologia 83:296–302

    Article  Google Scholar 

  54. Zhou LW, Dai YC (2012) Recognizing ecological patterns of wood-decaying polypores on gymnosperm and angiosperm trees in northeast China. Fungal Ecol 5:230–235

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2013R1A1A2A10011390), and by a Korea University Grant. We thank Dr. Jonathan J. Fong for helpful suggestions on the manuscript.

Compliance with Ethical Standards

The authors declare that they have no conflict of interest and this article does not contain any studies with human participants or animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Jin Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, Y., Jang, S., Min, M. et al. Comparison of the Diversity of Basidiomycetes from Dead Wood of the Manchurian fir (Abies holophylla) as Evaluated by Fruiting Body Collection, Mycelial Isolation, and 454 Sequencing. Microb Ecol 70, 634–645 (2015). https://doi.org/10.1007/s00248-015-0616-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-015-0616-5

Keywords

Navigation