Skip to main content

Advertisement

Log in

Forest Health in a Changing World

  • Fungal Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Forest pathology, the science of forest health and tree diseases, is operating in a rapidly developing environment. Most importantly, global trade and climate change are increasing the threat to forest ecosystems posed by new diseases. Various studies relevant to forest pathology in a changing world are accumulating, thus making it necessary to provide an update of recent literature. In this contribution, we summarize research at the interface between forest pathology and landscape ecology, biogeography, global change science and research on tree endophytes. Regional outbreaks of tree diseases are requiring interdisciplinary collaboration, e.g. between forest pathologists and landscape ecologists. When tree pathogens are widely distributed, the factors determining their broad-scale distribution can be studied using a biogeographic approach. Global change, the combination of climate and land use change, increased pollution, trade and urbanization, as well as invasive species, will influence the effects of forest disturbances such as wildfires, droughts, storms, diseases and insect outbreaks, thus affecting the health and resilience of forest ecosystems worldwide. Tree endophytes can contribute to biological control of infectious diseases, enhance tolerance to environmental stress or behave as opportunistic weak pathogens potentially competing with more harmful ones. New molecular techniques are available for studying the complete tree endobiome under the influence of global change stressors from the landscape to the intercontinental level. Given that exotic tree diseases have both ecologic and economic consequences, we call for increased interdisciplinary collaboration in the coming decades between forest pathologists and researchers studying endophytes with tree geneticists, evolutionary and landscape ecologists, biogeographers, conservation biologists and global change scientists and outline interdisciplinary research gaps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Franklin JF, Shugart HH, Harmon ME (1987) Tree death as an ecological process. Bioscience 37:550–556. doi:10.2307/1310665

    Google Scholar 

  2. Teale SA, Castello JD (2011) Regulators and terminators: the importance of biotic factors to a healthy forest. In: Castello JD, Teale SA (eds) Forest health. An integrated perspective. Cambridge University Press, Cambridge, pp 81–114

    Google Scholar 

  3. Hansen EM (1999) Disease and diversity in forest ecosystems. Australas Plant Pathol 28:313–319

    Google Scholar 

  4. Hansen EM, Goheen EM (2000) Phellinus weirii and other native root pathogens as determinants of forest structure and process in western North America. Ann Rev Phytopathol 38:515–539. doi:10.1146/annurev.phyto.38.1.515

    CAS  Google Scholar 

  5. Carnus JM, Parrotta J, Brockerhoff E, Arbez M, Jactel H, Kremer A, Lamb D, O’Hara K, Walters B (2006) Planted forests and biodiversity. J For 104:65–77

    Google Scholar 

  6. Lombardero MJ, Alonso-Rodríguez M, Roca-Posada EP (2012) Tree insects and pathogens display opposite tendencies to attack native vs. non-native pines. For Ecol Manag 281:121–129. doi:10.1016/j.foreco.2012.06.036

    Google Scholar 

  7. Roberge JM, Bengtsson SBK, Wulff S, Snäll T (2011) Edge creation and tree dieback influence the patch-tracking metapopulation dynamics of a red-listed epiphytic bryophyte. J Appl Ecol 48:650–658. doi:10.1111/j.1365-2664.2011.01963.x

    Google Scholar 

  8. Cobb RC, Rizzo DM, Hayden KJ, Garbelotto M, Filipe JAN, Gilligan CA, Dillon WW, Meentemeyer RK, Valachovic YS, Goheen E, Swiecki TJ, Hansen EM, Frankel SJ (2013) Biodiversity conservation in the face of dramatic forest disease: an integrated conservation strategy for tanoak (Notholithocarpus densiflorus) threatened by Sudden Oak Death. Madrono 60:151–164. doi:10.3120/0024-9637-60.2.151

    Google Scholar 

  9. Cahill DM, Rookes JE, Wilson BA, Gibson L, McDougall KL (2008) Phytophthora cinnamomi and Australia’s biodiversity: impacts, predictions and progress towards control. Aust J Bot 56:279–310. doi:10.1071/BT07159

    Google Scholar 

  10. Davis RA, Valentine LE, Craig MD, Wilson B, Bancroft WJ, Mallie M (2014) Impact of Phytophthora-dieback on birds in Banksia woodlands in southwest Western Australia. Biol Conserv 171:136–144. doi:10.1016/j.biocon.2014.01.027

    Google Scholar 

  11. Holdenrieder O (1991) Der Forstschutz – Objekte, Probleme, Strategien. Schweiz Z Forstwes 142:795–807

    Google Scholar 

  12. MacDonald WL (2003) Dominating North American forest pathology issues of the 20th century. Phytopathology 93:1039–1040. doi:10.1094/PHYTO.2003.93.8.1039

    PubMed  Google Scholar 

  13. Hepting GH, Cowling EB (1977) Forest pathology: unique features and prospects. Ann Rev Phytopathol 15:431–450. doi:10.1146/annurev.py.15.090177.002243

    Google Scholar 

  14. Petrokofsky G, Brown ND, Hemery GE, Woodward S, Wilson E, Weatherall A, Stokes V, Smithers RJ, Sangster M, Russell K, Pullin AS, Price C, Morecroft M, Malins M, Lawrence A, Kirby KJ, Godbold D, Charman E, Boshier D, Bosbeer S, Arnold JEM (2010) A participatory process for identifying and prioritizing policy-relevant research questions in natural resource management: a case study from the UK forestry sector. Forestry 83:357–367. doi:10.1093/forestry/cpq018

    Google Scholar 

  15. Wingfield MJ (1990) Current status and future prospects of forest pathology in South Africa. South Afr J Sci 86:60–62

    Google Scholar 

  16. Holdenrieder O (2000) Zur Situation der Forstpathologie in Europa. Nachr Deut Pflanzensch 52:135–139

    Google Scholar 

  17. Gadoury DM, Andrews J, Baumgartner K, Burr TJ, Kennelly MM, Lichens-Park A, MacDonald J, Savary S, Scherm H, Tally A, Wang GL (2009) Disciplinary, institutional, funding, and demographic trends in plant pathology: what does the future hold for the profession? Plant Dis 93:1228–1237. doi:10.1094/PDIS-93-12-1228

    Google Scholar 

  18. MacDonald J, Allen C, Gadoury D, Jacobi W, Kelemu S, Moyer J, Murray T, Ong K, Pearson C, Sherwood J, Vidaver A (2009) Education in plant pathology: present status and future challenges. Plant Dis 93:1238–1251. doi:10.1094/PDIS-93-12-1238

    Google Scholar 

  19. Seidl R, Fernandes PM, Fonseca TF, Gillet F, Jönsson AM, Merganičová K, Netherer S, Arpaci A, Bontemps JD, Bugmann H, González-Olabarria JR, Lasch P, Meredieu C, Moreira F, Schelhaas MJ, Mohren F (2011) Modelling natural disturbances in forest ecosystems: a review. Ecol Model 222:903–924. doi:10.1016/j.ecolmodel.2010.09.040

    Google Scholar 

  20. Mazziotta A, Mönkkönen M, Strandman H, Routa J, Tikkanen OP, Kellomäki S (2014) Modeling the effects of climate change and management on the dead wood dynamics in boreal forest plantations. Eur J For Res 133:405–421. doi:10.1007/s10342-013-0773-3

    Google Scholar 

  21. Hamelin RC (2012) Contributions of genomics to forest pathology. Can J Plant Pathol 34:20–28. doi:10.1080/07060661.2012.665389

    Google Scholar 

  22. Wood L, Gebhardt P (2013) Bioinformatics goes to school—new avenues for teaching contemporary biology. PLoS Comp Biol 9:e1003089. doi:10.1371/journal.pcbi.1003089

    CAS  Google Scholar 

  23. Holdenrieder O, Pautasso M, Weisberg P, Lonsdale D (2004) Tree diseases and landscape processes: the challenge of landscape pathology. Trends Ecol Evol 19:446–452. doi:10.1016/j.tree.2004.06.003

    PubMed  Google Scholar 

  24. Hatala JA, Dietze MC, Crabtree RL, Kendall K, Six D, Moorcroft PR (2011) An ecosystem-scale model for the spread of a host-specific forest pathogen in the Greater Yellowstone Ecosystem. Ecol Appl 21:1138–1153. doi:10.1890/09-2118.1

    PubMed  Google Scholar 

  25. Sieber TN (2007) Endophytic fungi in forest trees: are they mutualists? Fungal Biol Rev 21:75–89. doi:10.1016/j.fbr.2007.05.004

    Google Scholar 

  26. Witzell J, Martín JA, Blumenstein K (2014) Ecological aspects of endophyte-based biocontrol of forest diseases. In: Verma VC, Gange AC (eds) Advances in endophytic research. Springer, Berlin, pp 321–333. doi:10.1007/978-81-322-1575-2_17

    Google Scholar 

  27. Orwig DA (2002) Ecosystem to regional impacts of introduced pests and pathogens: historical context, questions and issues. J Biogeogr 29:1471–1474. doi:10.1046/j.1365-2699.2002.00787.x

    Google Scholar 

  28. Holzmueller EJ, Jose S, Jenkins MA (2010) Ecological consequences of an exotic fungal disease in eastern U.S. hardwood forests. For Ecol Manag 259:1347–1353. doi:10.1016/j.foreco.2010.01.014

    Google Scholar 

  29. Pautasso M, Aas G, Queloz V, Holdenrieder O (2013) European ash (Fraxinus excelsior) dieback—a conservation biology challenge. Biol Conserv 158:37–49. doi:10.1016/j.biocon.2012.08.026

    Google Scholar 

  30. Shearer BL, Crane CE, Cochrane JA, Dunne CP (2013) Variation in susceptibility of threatened flora to Phytophthora cinnamomi. Australas Plant Pathol 42:491–502. doi:10.1007/s13313-013-0215-1

    CAS  Google Scholar 

  31. Bragança H, Simões S, Onofre N, Santos N (2009) Factors influencing the incidence and spread of chestnut blight in northeastern Portugal. J Plant Pathol 91:53–59

    Google Scholar 

  32. Nagle AM, Long RP, Madden LV, Bonello P (2010) Association of Phytophthora cinnamomi with white oak decline in southern Ohio. Phytopathology 94:1026–1034. doi:10.1094/PDIS-94-8-1026

    Google Scholar 

  33. Meentemeyer RK, Haas SE, Václavík T (2012) Landscape epidemiology of emerging infectious diseases in natural and human-altered ecosystems. Ann Rev Phytopathol 50:379–402. doi:10.1146/annurev-phyto-081211-172938

    CAS  Google Scholar 

  34. Shearer BL, Crane CE (2014) Phytophthora cinnamomi disease expression and habitat suitability of soils on a topographic gradient across a coastal plain from dunes to forested peneplain. Australas Plant Pathol 43:131–142. doi:10.1007/s13313-013-0255-6

    CAS  Google Scholar 

  35. Smith-Mckenna EK, Resler LM, Tomback DF, Zhang H, Malanson GP (2013) Topographic influences on the distribution of white pine blister rust in Pinus albicaulis treeline communities. Ecoscience 20:215–229. doi:10.2980/20-3-3599

    Google Scholar 

  36. Geils BW, Hummer KE, Hunt RS (2010) White pines, Ribes, and blister rust: a review and synthesis. For Pathol 140:147–185. doi:10.1111/j.1439-0329.2010.00654.x

    Google Scholar 

  37. Cox CM, Bockus WW, Holt RD, Fang L, Garrett KA (2013) Spatial connectedness of plant species: potential links for apparent competition via plant diseases. Plant Pathol 62:1195–1204. doi:10.1111/ppa.12045

    Google Scholar 

  38. Purse BV, Graeser P, Searle K, Edwards C, Harris C (2014) Challenges in predicting invasive reservoir hosts of emerging pathogens: mapping Rhododendron ponticum as a foliar host for Phytophthora ramorum and Phytophthora kernoviae in the UK. Biol Invasions 15:529–545. doi:10.1007/s10530-012-0305-y

    Google Scholar 

  39. Reeser PW, Sutton W, Hansen EM, Remigi P, Adams GC (2011) Phytophthora species in forest streams in Oregon and Alaska. Mycologia 103:22–35. doi:10.3852/10-013

    PubMed  Google Scholar 

  40. Hohl A, Václavík T, Meentemeyer RK (2014) Go with the flow: geospatial analytics to quantify hydrologic landscape connectivity for passively dispersed microorganisms. Int J Geogr Inf Sci 28:1626–1641. doi:10.1080/13658816.2013.854900

    Google Scholar 

  41. Peterson E, Hansen E, Kanaskie A (2014) Spatial relationship between Phytophthora ramorum and roads or streams in Oregon tanoak forests. For Ecol Manag 312:216–224. doi:10.1016/j.foreco.2013.10.002

    Google Scholar 

  42. Harwood TD, Xu XM, Pautasso M, Jeger MJ, Shaw MW (2009) Epidemiological risk assessment using linked network and grid based modelling: Phytophthora ramorum and Phytophthora kernoviae in the UK. Ecol Model 220:3353–3361. doi:10.1016/j.ecolmodel.2009.08.014

    Google Scholar 

  43. Xu XM, Harwood TD, Pautasso M, Jeger MJ (2009) Spatio-temporal analysis of an invasive plant pathogen (Phytophthora ramorum) in England and Wales. Ecography 32:504–516. doi:10.1111/j.1600-0587.2008.05597.x

    Google Scholar 

  44. Chadfield V, Pautasso M (2012) Phytophthora ramorum in England and Wales: which environmental variables predict county disease incidence? For Pathol 42:150–159. doi:10.1111/j.1439-0329.2011.00735.x

    Google Scholar 

  45. Smith ML, Bruhn JN, Anderson JB (1992) The fungus Armillaria bulbosa is among the largest and oldest living organisms. Nature 356:428–431. doi:10.1038/356428a0

    Google Scholar 

  46. Brazee NJ, Marra RE, Wick RL (2012) Genotypic diversity of Armillaria gallica from mixed oak forests in Massachusetts. Mycologia 104:53–61. doi:10.3852/11-113

    PubMed  Google Scholar 

  47. Bendel M, Kienast F, Rigling D (2006) Genetic population structure of three Armillaria species at the landscape scale: a case study from Swiss Pinus mugo forests. Mycol Res 110:705–712. doi:10.1016/j.mycres.2006.02.002

    CAS  PubMed  Google Scholar 

  48. Travadon R, Smith ME, Fujiyoshi P, Douhan GW, Rizzo DM, Baumgartner K (2012) Inferring dispersal patterns of the generalist root fungus Armillaria mellea. New Phytol 193:959–969. doi:10.1111/j.1469-8137.2011.04015.x

    PubMed  Google Scholar 

  49. Prospero S, Lung-Escarmant B, Dutech C (2008) Genetic structure of an expanding Armillaria root rot fungus (Armillaria ostoyae) population in a managed pine forest in southwestern France. Mol Ecol 17:3366–3378. doi:10.1111/j.1365-294X.2007.03829.x

    CAS  PubMed  Google Scholar 

  50. Filipe JAN, Cobb RC, Meentemeyer RK, Lee CA, Valachovic YS, Cook AR, Rizzo DM, Gilligan CA (2012) Landscape epidemiology and control of pathogens with cryptic and long-distance dispersal: Sudden Oak Death in northern Californian forests. PLoS Comp Biol 8:e1002328. doi:10.1371/journal.pcbi.1002328

    CAS  Google Scholar 

  51. Shearer BL, Crane CE, Fairman RG, Dillon MJ, Buehrig RM (2014) Spatio-temporal variation in invasion of woodlands and forest by Phytophthora cinnamomi. Australas Plant Pathol 43:327–337. doi:10.1007/s13313-014-0274-y

    Google Scholar 

  52. Díaz R, Zas R, Fernández-López J (2007) Genetic variation of Prunus avium in susceptibility to cherry leaf spot (Blumeriella jaapii) in spatially heterogeneous infected seed orchards. Ann For Sci 64:21–30. doi:10.1051/forest:2006084

    Google Scholar 

  53. Hayden KJ, Nettel A, Dodd RS, Garbelotto M (2011) Will all the trees fall? Variable resistance to an introduced forest disease in a highly susceptible host. For Ecol Manag 261:1781–1791. doi:10.1016/j.foreco.2011.01.042

    Google Scholar 

  54. Kowalski T (2006) Chalara fraxinea sp nov associated with dieback of ash (Fraxinus excelsior) in Poland. For Pathol 36:264–270. doi:10.1111/j.1439-0329.2006.00453.x

    Google Scholar 

  55. Queloz V, Grünig CR, Berndt R, Kowalski T, Sieber TN, Holdenrieder O (2011) Cryptic speciation in Hymenoscyphus albidus. For Pathol 41:133–142. doi:10.1111/j.1439-0329.2010.00645.x

    Google Scholar 

  56. Baral H-O, Queloz VK, Hosoya TS (2014) Hymenoscyphus fraxineus, the correct scientific name for the fungus causing ash dieback in Europe. IMA Fungus 5(1):79–80. doi:10.5598/imafungus.2014.05.01.09

    PubMed Central  PubMed  Google Scholar 

  57. McKinney LV, Nielsen LR, Hansen JK, Kjær ED (2011) Presence of natural genetic resistance in Fraxinus excelsior (Oleraceae) to Chalara fraxinea (Ascomycota): an emerging infectious disease. Heredity 106:788–797. doi:10.1038/hdy.2010.119

    PubMed Central  CAS  PubMed  Google Scholar 

  58. Pliura A, Lygis V, Suchockas V, Bartkevicius E (2011) Performance of twenty four European Fraxinus excelsior populations in three Lithuanian progeny trials with a special emphasis on resistance to Chalara fraxinea. Balt For 17(1):17–34

    Google Scholar 

  59. Kowalski T, Kraj W, Szeszycki T (2012) Badania nad zamieraniem jesionu w drzewostanach Nadleśnictwa Rokita [The studies on ash decline in Rokita forest district stands]. Acta Agric Silv Ser Silv 50:3–22

    Google Scholar 

  60. Enderle R, Peters F, Nakou A, Metzler B (2013) Temporal development of ash dieback symptoms and spatial distribution of collar rots in a provenance trial of Fraxinus excelsior. Eur J For Res 132:865–876. doi:10.1007/s10342-013-0717-y

    Google Scholar 

  61. Stener LG (2013) Clonal differences in susceptibility to the dieback of Fraxinus excelsior in southern Sweden. Scand J For Res 28:205–216. doi:10.1080/02827581.2012.735699

    Google Scholar 

  62. Enderle R, Nakou A, Thomas K, Metzler B (2014) Susceptibility of autochthonous German Fraxinus excelsior clones to Hymenoscyphus pseudoalbidus is genetically determined. Ann For Sci. doi:10.1007/s13595-014-0413-1

    Google Scholar 

  63. Lobo A, Hansen JK, McKinney LV, Nielsen LR, Kjær ED (2014) Genetic variation in dieback resistance: growth and survival of Fraxinus excelsior under the influence of Hymenoscyphus pseudoalbidus. Scand J For Res. doi:10.1080/02827581.2014.950603

    Google Scholar 

  64. McKinney LV, Nielsen LR, Collinge DB, Thomsen IM, Hansen JK, Kjær ED (2014) The ash dieback crisis: genetic variation in resistance can prove a long-term solution. Plant Pathol. doi:10.1111/ppa.12196

    Google Scholar 

  65. Bingham RT, Hoff RJ, McDonald GI (1971) Disease resistance in forest trees. Ann Rev Phytopathol 9:433–452. doi:10.1146/annurev.py.09.090171.002245

    Google Scholar 

  66. Roll-Hansen F (1972) Scleroderris lagerbergii: resistance and differences in attack between pine species and provenances. A literature review. Eur J For Pathol 2:26–39. doi:10.1111/j.1439-0329.1972.tb00340.x

    Google Scholar 

  67. Illingworth K (1973) Variation in the susceptibility of lodgepole pine provenances to Sirococcus shoot blight. Can J For Res 3:585–589. doi:10.1139/x73-087

    Google Scholar 

  68. Barbour RC, O'Reilly-Wapstra JM, De Little DW, Jordan GJ, Steane DA, Humphreys JR, Bailey JK, Whitham TG, Potts BM (2009) A geographic mosaic of genetic variation within a foundation tree species and its community-level consequences. Ecology 90:1762–1772. doi:10.1890/08-0951.1

    PubMed  Google Scholar 

  69. Ingwell LL, Preisser EL (2011) Using citizen science programs to identify host resistance in pest-invaded forests. Conserv Biol 25:182–188. doi:10.1111/j.1523-1739.2010.01567.x

    PubMed  Google Scholar 

  70. Bernhardsson C, Robinson KM, Abreu IN, Jansson S, Albrectsen BR, Ingvarsson PK (2013) Geographic structure in metabolome and herbivore community co-occurs with genetic structure in plant defence genes. Ecol Lett 16:791–798. doi:10.1111/ele.12114

    PubMed  Google Scholar 

  71. Hamilton MG, Williams DR, Tilyard PA, Pinkard EA, Wardlaw TJ, Glen M, Vaillancourt RE, Potts BM (2013) A latitudinal cline in disease resistance of a host tree. Heredity 110:372–379. doi:10.1038/hdy.2012.106

    PubMed Central  CAS  PubMed  Google Scholar 

  72. Hayden KJ, Garbelotto M, Dodd R, Wright JW (2013) Scaling up from greenhouse resistance to fitness in the field for a host of an emerging forest disease. Evol Appl 6:970–982. doi:10.1111/eva.12080

    PubMed Central  PubMed  Google Scholar 

  73. Busby PE, Newcombe G, Dirzo R, Whitham TG (2014) Genetic basis of pathogen community structure for foundation tree species in a common garden and in the wild. J Ecol 101:867–877. doi:10.1111/1365-2745.12112

    Google Scholar 

  74. Shearer BL, Michaelsen BJ, Somerford PJ, Williams M (2014) Forest environment mediated intraspecific resistance of Eucalyptus marginata to Phytophthora cinnamomi. Australas Plant Pathol 43:245–255. doi:10.1007/s13313-013-0263-6

    Google Scholar 

  75. Brazee NJ, Wick RL (2011) Armillaria species distribution and site relationships in Pinus- and Tsuga-dominated forests in Massachusetts. Can J For Res 41:1477–1490. doi:10.1139/X11-076

    Google Scholar 

  76. Beh MM, Metz MR, Frangioso KM, Rizzo DM (2012) The key host for an invasive forest pathogen also facilitates the pathogen’s survival of wildfire in California forests. New Phytol 196:1145–1154. doi:10.1111/j.1469-8137.2012.04352.x

    PubMed  Google Scholar 

  77. Metz MR, Varner JM, Frangioso KM, Meentemeyer RK, Rizzo DM (2013) Unexpected redwood mortality from synergies between wildfire and an emerging infectious disease. Ecology 94:2152–2159. doi:10.1890/13-0915.1

    PubMed  Google Scholar 

  78. Garnas JR, Houston DR, Twery MJ, Ayres MP, Evans C (2013) Inferring controls on the epidemiology of beech bark disease from spatial patterning of disease organisms. Agric For Entomol 15:146–156. doi:10.1111/j.1461-9563.2012.00595.x

    Google Scholar 

  79. Morin RS, Liebhold AM, Tobin PC, Gottschalk KW, Luzader E (2007) Spread of beech bark disease in the eastern United States and its relationship to regional forest composition. Can J For Res 37:726–736. doi:10.1139/X06-281

    Google Scholar 

  80. Taylor AR, McPhee DA, Loo JA (2013) Incidence of beech bark disease resistance in the eastern Acadian forest of North America. For Chron 89:690–695

    Google Scholar 

  81. Kasson MT, Livingston WH (2012) Relationships among beech bark disease, climate, radial growth response and mortality of American beech in northern Maine, USA. For Pathol 42:199–212. doi:10.1111/j.1439-0329.2011.00742.x

    Google Scholar 

  82. Jarčuška B, Mihál I, Cicák A, Tsakov H (2013) Beech bark necrosis: partitioning the environmental and spatial variation of the damage severity in Central and South-Eastern Europe. Ann For Res 56:317–338

    Google Scholar 

  83. Prospero S, Rigling D (2012) Invasion genetics of the chestnut blight fungus Cryphonectria parasitica in Switzerland. Phytopathology 102:73–82. doi:10.1094/PHYTO-02-11-0055

    CAS  PubMed  Google Scholar 

  84. Peters FS, Bußkamp J, Prospero S, Rigling D, Metzler B (2014) Genetic diversification of the chestnut blight fungus Cryphonectria parasitica and its associated hypovirus in Germany. Fung Biol 118:193–210. doi:10.1016/j.funbio.2013.11.009

    Google Scholar 

  85. Bryner SF, Rigling D (2011) Temperature‐dependent genotype‐by‐genotype interaction between a pathogenic fungus and its hyperparasitic virus. Am Nat 177:65–74. doi:10.1086/657620

    PubMed  Google Scholar 

  86. Bryner SF, Rigling D (2012) Hypovirus virulence and vegetative incompatibility in populations of the chestnut blight fungus. Phytopathology 102:1161–1167. doi:10.1094/PHYTO-01-12-0013-R

    PubMed  Google Scholar 

  87. Brusini J, Robin C (2013) Mycovirus transmission revisited by in situ pairings of vegetatively incompatible isolates of Cryphonectria parasitica. J Virol Meth 187:435–442. doi:10.1016/j.jviromet.2012.11.025

    CAS  Google Scholar 

  88. Springer JC, Davelos Baines AL, Fulbright DW, Chansler MT, Jarosz AM (2013) Hyperparasites influence population structure of the chestnut blight pathogen, Cryphonectria parasitica. Phytopathology 103:1280–1286. doi:10.1094/PHYTO-10-12-0273-R

    PubMed  Google Scholar 

  89. Waring KM, O’Hara KL (2005) Silvicultural strategies in forest ecosystems affected by introduced pests. For Ecol Manag 209:27–41. doi:10.1016/j.foreco.2005.01.008

    Google Scholar 

  90. Garbelotto M, Gonthier P (2013) Biology, epidemiology, and control of Heterobasidion species worldwide. Ann Rev Phytopathol 51:39–59. doi:10.1146/annurev-phyto-082712-102225

    CAS  Google Scholar 

  91. Tsykun T, Rigling D, Nikolaychuk V, Prospero S (2012) Diversity and ecology of Armillaria species in virgin forests in the Ukrainian Carpathians. Mycol Prog 11:403–414. doi:10.1007/s11557-011-0755-0

    Google Scholar 

  92. Pinkard EA, Kriticos DJ, Wardlaw TJ, Carnegie AJ, Leriche A (2010) Estimating the spatio-temporal risk of disease epidemics using a bioclimatic niche model. Ecol Model 221:2828–2838. doi:10.1016/j.ecolmodel.2010.08.017

    Google Scholar 

  93. Queloz V, Sieber TN, Holdenrieder O, McDonald BA, Grünig CR (2011) No biogeographical pattern for a root-associated fungal species complex. Glob Ecol Biogeogr 20:160–169. doi:10.1111/j.1466-8238.2010.00589.x

    Google Scholar 

  94. Eschen R, Holmes T, Smith D, Roques A, Santini A, Kenis M (2014) Likelihood of establishment of tree pests and diseases based on their worldwide occurrence as determined by hierarchical cluster analysis. For Ecol Manag 315:103–111. doi:10.1016/j.foreco.2013.12.021

    Google Scholar 

  95. Potter KM, Koch FH (2014) Patterns of forest phylogenetic community structure across the United States and their possible forest health implications. For Sci. doi:10.5849/forsci.13-115

    Google Scholar 

  96. Gibbs JN (1978) Intercontinental epidemiology of Dutch elm disease. Ann Rev Phytopathol 16:287–307. doi:10.1146/annurev.py.16.090178.001443

    Google Scholar 

  97. Houston DR, Parker EJ, Perrin R, Lang KJ (1979) Beech bark disease: a comparison of the disease in North America, Great Britain, France, and Germany. Eur J For Pathol 9:199–211. doi:10.1111/j.1439-0329.1979.tb00679.x

    Google Scholar 

  98. Karnosky DF (1979) Dutch elm disease: a review of the history, environmental implications, control, and research needs. Environ Conserv 6:311–322. doi:10.1017/S037689290000357X

    Google Scholar 

  99. Klein RM, Perkins TD (1988) Primary and secondary causes and consequences of contemporary forest decline. Bot Rev 54:1–43. doi:10.1007/BF02858517

    Google Scholar 

  100. Innes JL, Landmann G, Mettendorf B (1993) Consistency of observations of forest tree defoliation in three European countries. Environ Monit Assess 25:29–40. doi:10.1007/BF00549790

    CAS  PubMed  Google Scholar 

  101. Ferretti M (1997) Forest health assessment and monitoring—issues for consideration. Environ Monit Assess 48:45–72. doi:10.1023/A:1005748702893

    Google Scholar 

  102. Wingfield MJ, Slippers B, Roux J, Wingfield BD (2001) Worldwide movement of exotic forest fungi, especially in the tropics and the southern hemisphere. Bioscience 51:134–140. doi:10.1641/0006-3568(2001)051[013

    Google Scholar 

  103. Wingfield MJ, Roux J, Wingfield BD (2011) Insect pests and pathogens of Australian acacias grown as non-natives—an experiment in biogeography with far-reaching consequences. Divers Distrib 17:968–977. doi:10.1111/j.1472-4642.2011.00786.x

    Google Scholar 

  104. Hasegawa E, Ota Y, Hattori T, Sahashi N, Kikuchi T (2011) Ecology of Armillaria species on conifers in Japan. For Pathol 41:429–437. doi:10.1111/j.1439-0329.2010.00696.x

    Google Scholar 

  105. Bryner SF, Rigling D, Brunner PC (2012) Invasion history and demographic pattern of Cryphonectria hypovirus 1 across European populations of the chestnut blight fungus. Ecol Evol 2:3227–3241. doi:10.1002/ece3.429

    PubMed Central  PubMed  Google Scholar 

  106. Dutech C, Barrès B, Bridier J, Robin C, Milgroom MG, Ravigné V (2012) The chestnut blight fungus world tour: successive introduction events from diverse origins in an invasive plant fungal pathogen. Mol Ecol 21:3931–3946. doi:10.1111/j.1365-294X.2012.05575.x

    CAS  PubMed  Google Scholar 

  107. Brasier CM (2008) The biosecurity threat to the UK and global environment from international trade in plants. Plant Pathol 57:792–808. doi:10.1111/j.1365-3059.2008.01886.x

    Google Scholar 

  108. Santini A et al (2013) Biogeographical patterns and determinants of invasion by forest pathogens in Europe. New Phytol 197:238–250. doi:10.1111/j.1469-8137.2012.04364.x

    CAS  PubMed  Google Scholar 

  109. Pautasso M, Jeger MJ (2014) Network epidemiology and plant trade networks. AoB Plants 6:plu007. doi:10.1093/aobpla/plu007

    PubMed Central  PubMed  Google Scholar 

  110. Steenkamp ET, Makhari OM, Coutinho TA, Wingfield BD, Wingfield MJ (2014) Evidence for a new introduction of the pitch canker fungus Fusarium circinatum in South Africa. Plant Pathol 63:530–538. doi:10.1111/ppa.12136

    Google Scholar 

  111. Möykkynen T, Capretti P, Pukkala T (2014) Modelling the potential spread of Fusarium circinatum, the causal agent of pitch canker in Europe. Ann For Sci. doi:10.1007/s13595-014-0412-2

    Google Scholar 

  112. Szabó I, Lakatos F, Sipos G (2013) Occurrence of soilborne Phytophthora species in declining broadleaf forests in Hungary. Eur J Plant Pathol 137:159–168. doi:10.1007/s10658-013-0228-1

    Google Scholar 

  113. Gross A, Holdenrieder O, Pautasso M, Queloz V, Sieber TN (2014) Hymenoscyphus pseudoalbidus, the causal agent of European ash dieback. Mol Plant Pathol 15:5–21. doi:10.1111/mpp.12073

    CAS  PubMed  Google Scholar 

  114. Gross A, Hosoya T, Queloz V (2014) Population structure of the invasive forest pathogen Hymenoscyphus pseudoalbidus. Mol Ecol 23:2943–2960. doi:10.1111/mec.12792

    PubMed  Google Scholar 

  115. Vélez ML, Coetzee MPA, Wingfield MJ, Rajchenberg M, Greslebin AG (2014) Evidence of low levels of genetic diversity for the Phytophthora austrocedrae population in Patagonia, Argentina. Plant Pathol 63:212–220. doi:10.1111/ppa.12067

    Google Scholar 

  116. Busby PE, Aimé MC, Newcombe G (2012) Foliar pathogens of Populus angustifolia are consistent with a hypothesis of Beringian migration into North America. Fung Biol 116:792–801. doi:10.1016/j.funbio.2012.04.012

    Google Scholar 

  117. Baumgartner K, Travadon R, Bruhn J, Bergemann SE (2010) Contrasting patterns of genetic diversity and population structure of Armillaria mellea sensu stricto in the eastern and western United States. Phytopathology 100:708–718

    PubMed  Google Scholar 

  118. Broders KD, Boraks A, Sanchez AM, Boland GJ (2012) Population structure of the butternut canker fungus, Ophiognomonia clavigignenti-juglandacearum, in North American forests. Ecol Evol 2:2114–2127. doi:10.1002/ece3.332

    PubMed Central  CAS  PubMed  Google Scholar 

  119. Garbelotto M, Guglielmo F, Mascheretti S, Croucher PJP, Gonthier P (2013) Population genetic analyses provide insights on the introduction pathway and spread patterns of the North American forest pathogen Heterobasidion irregulare in Italy. Mol Ecol 22:4855–4869. doi:10.1111/mec.12452

    CAS  PubMed  Google Scholar 

  120. Heinzelmann R, Rigling D, Prospero S (2012) Population genetics of the wood-rotting basidiomycete Armillaria cepistipes in a fragmented forest landscape. Fung Biol 116:985–994. doi:10.1016/j.funbio.2012.07.002

    Google Scholar 

  121. Ježić M, Krstin L, Rigling D, Ćurković-Perica M (2012) High diversity in populations of the introduced plant pathogen, Cryphonectria parasitica, due to encounters between genetically divergent genotypes. Mol Ecol 21:87–99. doi:10.1111/j.1365-294X.2011.05369.x

    PubMed  Google Scholar 

  122. Prospero S, Lutz A, Tavadze B, Supatashvili A, Rigling D (2013) Discovery of a new gene pool and a high genetic diversity of the chestnut blight fungus Cryphonectria parasitica in Caucasian Georgia. Infect Genet Evol 20:131–139. doi:10.1016/j.meegid.2013.08.009

    CAS  PubMed  Google Scholar 

  123. Vermeulen M, Gryzenhout M, Wingfield MJ, Roux J (2013) Population structure of Chrysoporthe austroafricana in southern Africa determined using Vegetative Compatibility Groups (VCGs). For Pathol 43:124–131. doi:10.1111/efp.12006

    Google Scholar 

  124. Smalley EB, Guries RP (1993) Breeding elms for resistance to Dutch elm disease. Ann Rev Phytopathol 31:325–354. doi:10.1146/annurev.py.31.090193.001545

    Google Scholar 

  125. Santini A, La Porta N, Ghelardini L, Mittempergher L (2008) Breeding against Dutch elm disease adapted to the Mediterranean climate. Euphytica 163:45–56. doi:10.1007/s10681-007-9573-5

    Google Scholar 

  126. Jacobs DF, Dalgleish HJ, Nelson CD (2014) A conceptual framework for restoration of threatened plants: the effective model of American chestnut (Castanea dentata) reintroduction. New Phytol 197:378–393. doi:10.1111/nph.12020

    Google Scholar 

  127. Hicke JA, Allen CD, Desai AR, Dietze MC, Hall RJ, Hogg EHT, Kashian DM, Moore D, Raffa KF, Sturrock RN, Vogelmann J (2012) Effects of biotic disturbances on forest carbon cycling in the United States and Canada. Glob Chang Biol 18:7–34. doi:10.1111/j.1365-2486.2011.02543.x

    Google Scholar 

  128. Matyssek R, Wieser G, Calfapietra C, de Vries W, Dizengremel P, Ernst D, Jolivet Y, Mikkelsen TN, Mohren GMJ, Le Thiec D, Tuovinen JP, Weatherall A, Paoletti E (2012) Forests under climate change and air pollution: gaps in understanding and future directions for research. Environ Pollut 160:57–65. doi:10.1016/j.envpol.2011.07.007

    CAS  PubMed  Google Scholar 

  129. Ayres MP, Hicke JA, Kerns BK, McKenzie D, Littell JS, Band LE, Luce CH, Weed AS, Raymond CL (2014) Disturbance regimes and stressors. In: Peterson DL et al (eds) Climate change and United States forests. Springer, Berlin, pp 55–92. doi:10.1007/978-94-007-7515-2__4

    Google Scholar 

  130. Wingfield MJ, Slippers B, Wingfield BD (2010) Novel associations between pathogens, insects and tree species threaten world forests. N Z J For Sci 40:95–103

    Google Scholar 

  131. Pautasso M, Döring TF, Garbelotto M, Pellis L, Jeger MJ (2012) Impacts of climate change on plant diseases—opinions and trends. Eur J Plant Pathol 133:295–313. doi:10.1007/s10658-012-9936-1

    Google Scholar 

  132. Jeschke JM, Keesing F, Ostfeld RS (2013) Novel organisms: comparing invasive species, GMOs, and emerging pathogens. Ambio 42:541–548. doi:10.1007/s13280-013-0387-5

    PubMed Central  PubMed  Google Scholar 

  133. Kremer A, Potts BM, Delzon S (2014) Genetic divergence in forest trees: understanding the consequences of climate change. Funct Ecol 28:22–36. doi:10.1111/1365-2435.12169

    Google Scholar 

  134. Garbelotto M, Pautasso M (2012) Impacts of exotic forest pathogens on Mediterranean ecosystems: four case studies. Eur J Plant Pathol 133:101–116. doi:10.1007/s10658-011-9928-6

    Google Scholar 

  135. Thompson SE, Levin S, Rodriguez-Iturbe I (2014) Rainfall and temperatures changes have confounding impacts on Phytophthora cinnamomi occurrence risk in the southwestern USA under climate change scenarios. Glob Chang Biol 20:1299–1312. doi:10.1111/gcb.12463

    PubMed  Google Scholar 

  136. Weed AS, Ayres MP, Hicke JA (2013) Consequences of climate change for biotic disturbances in North American forests. Ecol Monogr 83:441–470. doi:10.1890/13-0160.1

    Google Scholar 

  137. Kaczynski KM, Cooper DJ (2013) Susceptibility of Salix monticola to Cytospora canker under increased temperatures and decreased water levels. For Ecol Manag 305:223–228. doi:10.1016/j.foreco.2013.06.002

    Google Scholar 

  138. Dodd RS, Hüberli D, Mayer W, Harnik TY, Afzal-Rafii Z, Garbelotto M (2008) Evidence for the role of synchronicity between host phenology and pathogen activity in the distribution of sudden oak death canker disease. New Phytol 179:505–514. doi:10.1111/j.1469-8137.2008.02450.x

    PubMed  Google Scholar 

  139. Gray LK, Russell JH, Yanchuk AD, Hawkins BJ (2013) Predicting the risk of cedar leaf blight (Didymascella thujina) in British Columbia under future climate change. Agric For Meteorol 180:152–163. doi:10.1016/j.agrformet.2013.04.023

    Google Scholar 

  140. Aukema JE, McCullough DG, Von Holle B, Liebhold AM, Britton K, Frankel SJ (2010) Historical accumulation of nonindigenous forest pests in the continental United States. Bioscience 60:886–897. doi:10.1525/bio.2010.60.11.5

    Google Scholar 

  141. Dehnen-Schmutz K, Holdenrieder O, Jeger MJ, Pautasso M (2010) Structural change in the international horticultural industry: some implications for plant health. Sci Hortic 125:1–15. doi:10.1016/j.scienta.2010.02.017

    Google Scholar 

  142. Moslonka-Lefebvre M, Finley A, Dorigatti I, Dehnen-Schmutz K, Harwood T, Jeger MJ, Xu XM, Holdenrieder O, Pautasso M (2011) Networks in plant epidemiology: from genes to landscapes, countries and continents. Phytopathology 101:392–403. doi:10.1094/PHYTO-07-10-0192

    PubMed  Google Scholar 

  143. Grünwald NJ, Garbelotto M, Goss EM, Heungens K, Prospero S (2012) Emergence of the sudden oak death pathogen Phytophthora ramorum. Trends Microbiol 20:131–138. doi:10.1016/j.tim.2011.12.006

    PubMed  Google Scholar 

  144. Liebhold AM, Brockerhoff EG, Garrett LJ, Parke JL, Britton KO (2012) Live plant imports: the major pathway for forest insect and pathogen invasions of the US. Front Ecol Environ 10:135–143. doi:10.1890/110198

    Google Scholar 

  145. Bienapfl JC, Balci Y (2014) Movement of Phytophthora spp. in Maryland’s nursery trade. Plant Dis 98:134–144. doi:10.1094/PDIS-06-13-0662-RE

    Google Scholar 

  146. Schoebel CN, Stewart J, Gruenwald NJ, Rigling D, Prospero S (2014) Population history and pathways of spread of the plant pathogen Phytophthora plurivora. PLoS One 9:e85368. doi:10.1371/journal.pone.0085368

    PubMed Central  PubMed  Google Scholar 

  147. Thoirain B, Husson C, Marçais B (2007) Risk factors for the Phytophthora-induced decline of alder in northeastern France. Phytopathology 97:99–105. doi:10.1094/PHYTO-97-0099

    CAS  PubMed  Google Scholar 

  148. Pautasso M (2013) Phytophthora ramorum—a pathogen linking network epidemiology, landscape pathology and conservation biogeography. CAB Rev 8:24. doi:10.1079/PAVSNNR20138024

    Google Scholar 

  149. Prospero S, Vercauteren A, Heungens K, Belbahri L, Rigling D (2013) Phytophthora diversity and the population structure of Phytophthora ramorum in Swiss ornamental nurseries. Plant Pathol 62:1063–1071. doi:10.1111/ppa.12027

    Google Scholar 

  150. Ginetti B, Moricca S, Squires JN, Cooke DEL, Ragazzi A, Jung T (2014) Phytophthora acerina sp. nov., a new species causing bleeding cankers and dieback of Acer pseudoplatanus trees in planted forests in northern Italy. Plant Pathol 63:858–876. doi:10.1111/ppa.12153

    CAS  Google Scholar 

  151. Sansford CE (2013) Pest risk analysis for Hymenoscyphus pseudoalbidus for the UK and the Republic of Ireland. Forestry Commission, UK. Accessed May 2014 at http://www.fera.defra.gov.uk/plants/plantHealth/pestsDiseases/documents/hymenoscyphusPseudoalbidusPRA.pdf

  152. Mcpherson EG (1993) Monitoring urban forest health. Environ Monit Assess 26:165–174. doi:10.1007/BF00547494

    CAS  PubMed  Google Scholar 

  153. Tubby KV, Webber JF (2010) Pests and diseases threatening urban trees under a changing climate. Forestry 83:451–459. doi:10.1093/forestry/cpq027

    Google Scholar 

  154. Tomoshevich M, Kirichenko N, Holmes K, Kenis M (2013) Foliar fungal pathogens of European woody plants in Siberia: an early warning of potential threats? For Pathol 43:345–359. doi:10.1111/efp.12036

    Google Scholar 

  155. Liebhold AM, McCullough DG, Blackburn LM, Frankel SJ, Von Holle B, Aukema JE (2013) A highly aggregated geographical distribution of forest pest invasions in the USA. Divers Distrib 19:1208–1216. doi:10.1111/ddi.12112

    Google Scholar 

  156. Barber PA, Paap T, Burgess TI, Dunstan W, Hardy GE (2013) A diverse range of Phytophthora species are associated with dying urban trees. Urban For Urban Green 12:569–575. doi:10.1016/j.ufug.2013.07.009

    Google Scholar 

  157. Jactel H, Petit J, Desprez-Loustau ML, Delzon S, Piou D, Battisti A, Koricheva J (2012) Drought effects on damage by forest insects and pathogens: a meta-analysis. Glob Chang Biol 18:267–276. doi:10.1111/j.1365-2486.2011.02512.x

    Google Scholar 

  158. Barbeito I, Brücker RL, Rixen C, Bebi P (2013) Snow fungi-induced mortality of Pinus cembra at the alpine treeline: evidence from plantations. Arct Antarct Alp Res 45:455–470. doi:10.1657/1938-4246-45.4.455

    Google Scholar 

  159. Gori Y, Cherubini P, Camin F, La Porta N (2013) Fungal root pathogen (Heterobasidion parviporum) increases drought stress in Norway spruce stand at low elevation in the Alps. Eur J For Res 132:607–619. doi:10.1007/s10342-013-0698-x

    Google Scholar 

  160. Pautasso M (2013) Responding to diseases caused by exotic tree pathogens. In: Gonthier P, Nicolotti G (eds) Infectious forest diseases. CABI, Wallingford, pp 592–612

    Google Scholar 

  161. Pautasso M (2013) Fungal under-representation is (slowly) diminishing in the life sciences. Fungal Ecol 6:129–135. doi:10.1016/j.funeco.2012.04.004

    Google Scholar 

  162. Hantula J, Müller MM, Uusivuori J (2014) International plant trade associated risks: laissez-faire or novel solutions. Environ Sci Pollut 37:158–160. doi:10.1016/j.envsci.2013.09.011

    Google Scholar 

  163. Bebber DP, Holmes T, Smith D, Gurr SJ (2014) Economic and physical determinants of the global distributions of crop pests and pathogens. New Phytol 202:901–910. doi:10.1111/nph.12722

    PubMed Central  PubMed  Google Scholar 

  164. Bebber DP, Ramotowski MAT, Gurr SJ (2013) Crop pests and pathogens move polewards in a warming world. Nat Clim Chang 3:985–988. doi:10.1038/nclimate1990

    Google Scholar 

  165. Busby PE, Zimmerman N, Weston DJ, Jawdy SS, Houbraken J, Newcombe G (2013) Leaf endophytes and Populus genotype affect severity of damage from the necrotrophic leaf pathogen, Drepanopeziza populi. Ecosphere 4:125. doi:10.1890/ES13-00127.1

    Google Scholar 

  166. Mayerhofer MS, Kernaghan G, Harper KA (2013) The effects of fungal root endophytes on plant growth: a meta-analysis. Mycorrhiza 23:119–128. doi:10.1007/s00572-012-0456-9

    PubMed  Google Scholar 

  167. Raghavendra AKH, Newcombe G (2013) The contribution of foliar endophytes to quantitative resistance to Melampsora rust. New Phytol 197:909–918. doi:10.1111/nph.12066

    PubMed  Google Scholar 

  168. Tellenbach C, Sieber TN (2012) Do colonization by dark septate endophytes and elevated temperature affect pathogenicity of oomycetes? FEMS Microbiol Ecol 82:157–168

    CAS  PubMed  Google Scholar 

  169. Tellenbach C, Sumarah MW, Grünig CR, Miller JD (2013) Inhibition of Phytophthora species by secondary metabolites produced by the dark septate endophyte Phialocephala europaea. Fung Ecol 6:12–18. doi:10.1016/j.funeco.2012.10.003

    Google Scholar 

  170. Rodriguez R, Redman R (2008) More than 400 million years of evolution and some plants still can’t make it on their own: plant stress tolerance via fungal symbiosis. J Exp Bot 59:1109–1114. doi:10.1093/jxb/erm342

    CAS  PubMed  Google Scholar 

  171. Redman RS, Kim YO, Woodward CJDA, Greer C, Espino L, Doty SL, Rodriguez R (2011) Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: a strategy for mitigating impacts of climate change. PLoS One 6:e14823. doi:10.1371/journal.pone.0014823

    PubMed Central  CAS  PubMed  Google Scholar 

  172. Hubbard M, Germida J, Vujanovic V (2012) Fungal endophytes improve wheat seed germination under heat and drought stress. Botany 90:137–149. doi:10.1139/B11-091

    Google Scholar 

  173. Giauque H, Hawkes CV (2013) Climate affects symbiotic fungal endophyte diversity and performance. Am J Bot 100:1435–1444. doi:10.3732/ajb.1200568

    PubMed  Google Scholar 

  174. Goh CH, Veliz Vallejos DF, Nicotra AB, Mathesius U (2013) The impact of beneficial plant-associated microbes on plant phenotypic plasticity. J Chem Ecol 39:826–839. doi:10.1007/s10886-013-0326-8

    PubMed Central  CAS  PubMed  Google Scholar 

  175. Zhang Y, Li T, Zhao ZW (2013) Colonization characteristics and composition of dark septate endophytes (DSE) in a lead and zinc slag heap in southwest China. Soil Sedim Contam 22:532–545. doi:10.1080/15320383.2013.750267

    CAS  Google Scholar 

  176. Kurose D, Furuya N, Tsuchiya K, Tsushima S, Evans HC (2012) Endophytic fungi associated with Fallopia japonica (Polygonaceae) in Japan and their interactions with Puccinia polygoni-amphibii var. tovariae, a candidate for classical biological control. Fung Biol 116:785–791. doi:10.1016/j.funbio.2012.04.011

    Google Scholar 

  177. Eyles A, Bonello P, Ganley R, Mohammed C (2010) Induced resistance to pests and pathogens in trees. New Phytol 185:893–908. doi:10.1111/j.1469-8137.2009.03127.x

    PubMed  Google Scholar 

  178. Shoresh M, Harman GE, Mastouri F (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Ann Rev Phytopathol 48:21–43. doi:10.1146/annurev-phyto-073009-114450

    CAS  Google Scholar 

  179. Gómez-Lama Cabanás C, Schiliro E, Valverde-Corredor A, Mercado-Blanco J (2014) The biocontrol endophytic bacterium Pseudomonas fluorescens PICF7 induces systemic defense responses in aerial tissues upon colonization of olive roots. Front Microbiol. doi:10.3389/fmicb.2014.00427

    PubMed Central  PubMed  Google Scholar 

  180. Rajala T, Velmala SM, Tuomivirta T, Haapanen M, Müller M, Pennanen T (2013) Endophyte communities vary in the needles of Norway spruce clones. Fung Biol 117:182–190. doi:10.1016/j.funbio.2013.01.006

    Google Scholar 

  181. Rajala T, Velmala SM, Vesala R, Smolander A, Pennanen T (2014) The community of needle endophytes reflects the current physiological state of Norway spruce. Fung Biol 118:309–315. doi:10.1016/j.funbio.2014.01.002

    Google Scholar 

  182. Izhaki I, Fridman S, Gerchman Y, Halpern M (2013) Variability of bacterial community composition on leaves between and within plant species. Curr Microbiol 66:227–235. doi:10.1007/s00284-012-0261-x

    CAS  PubMed  Google Scholar 

  183. Saikkonen K, Faeth SH, Helander M, Sullivan TJ (1998) Fungal endophytes: a continuum of interactions with host plants. Ann Rev Ecol Syst 29:319–343. doi:10.1146/annurev.ecolsys.29.1.319

    Google Scholar 

  184. Delaye L, García-Guzmán G, Heil M (2013) Endophytes versus biotrophic and necrotrophic pathogens—are fungal lifestyles evolutionarily stable traits? Fung Divers 60:125–135. doi:10.1007/s13225-013-0240-y

    Google Scholar 

  185. Osono T, Masuya H (2012) Endophytic fungi associated with leaves of Betulaceae in Japan. Can J Microbiol 58:507–515. doi:10.1139/w2012-018

    CAS  PubMed  Google Scholar 

  186. Peršoh D (2013) Factors shaping community structure of endophytic fungi—evidence from the Pinus-Viscum-system. Fung Divers 60:55–69. doi:10.1007/s13225-013-0225-x

    Google Scholar 

  187. Scholtysik A, Unterseher M, Otto P, Wirth C (2013) Spatio-temporal dynamics of endophyte diversity in the canopy of European ash (Fraxinus excelsior). Mycol Prog 12:291–304. doi:10.1007/s11557-012-0835-9

    Google Scholar 

  188. Saikkonen K (2007) Forest structure and fungal endophytes. Fung Biol Rev 21:67–74. doi:10.1016/j.fbr.2007.05.001

    Google Scholar 

  189. Unterseher M (2011) Diversity of fungal endophytes in temperate forest trees. In: Pirttilä AM, Frank AC (eds) Endophytes of forest trees: biology and applications. Springer, Berlin, pp 31–46. doi:10.1007/978-94-007-1599-8_2

    Google Scholar 

  190. Unterseher M, Peršoh D, Schnittler M (2013) Leaf-inhabiting endophytic fungi of European beech (Fagus sylvatica L.) co-occur in leaf litter but are rare on decaying wood of the same host. Fung Divers 60:43–54. doi:10.1007/s13225-013-0222-0

    Google Scholar 

  191. Bálint M, Tiffin P, Hallström B, O’Hara RB, Olson MS et al (2013) Host genotype shapes the foliar fungal microbiome of balsam poplar (Populus balsamifera). PLoS One 8:e53987. doi:10.1371/journal.pone.0053987

    PubMed Central  PubMed  Google Scholar 

  192. Ahlholm JU, Helander M, Henriksson J, Metzler M, Saikkonen K (2002) Environmental conditions and host genotype direct genetic diversity of Venturia ditricha, a fungal endophyte of birch trees. Evolution 56:1566–1573. doi:10.1111/j.0014-3820.2002.tb01468.x

    PubMed  Google Scholar 

  193. Martín JA, Witzell J, Blumenstein K, Rozpedowska E, Helander M, Sieber TN, Gil L (2013) Resistance to Dutch elm disease reduces presence of xylem endophytic fungi in elms (Ulmus spp.). PLoS One 8:e56987. doi:10.1371/journal.pone.0056987

    PubMed Central  PubMed  Google Scholar 

  194. Ikeda A, Matsuoka S, Masuya H, Mori AS, Hirose D, Osono T (2014) Comparison of the diversity, composition, and host recurrence of xylariaceous endophytes in subtropical, cool temperate, and subboreal regions in Japan. Popul Ecol 56:289–300. doi:10.1007/s10144-013-0412-3

    Google Scholar 

  195. Petrini O (1991) Fungal endophytes of tree leaves. In: Andrews JH, Hirano SS (eds) Microbial ecology of leaves. Springer, New York, pp 179–197

    Google Scholar 

  196. Osono T (2014) Diversity and ecology of endophytic and epiphytic fungi of tree leaves in Japan: a review. In: Verma VC, Gange AC (eds) Advances in endophytic research. Springer, Berlin, pp 3–26. doi:10.1007/978-81-322-1575-2_1

    Google Scholar 

  197. Cordier T, Robin C, Capdevielle X, Fabreguettes O, Desprez-Loustau M-L, Vacher C (2012) The composition of phyllosphere fungal assemblages of European beech (Fagus sylvatica) varies significantly along an elevation gradient. New Phytol 196:510–519. doi:10.1111/j.1469-8137.2012.04284.x

    PubMed  Google Scholar 

  198. Terhonen E, Marco T, Sun H, Jalkanen R, Kasanen R, Vuorinen M, Asiegbu F (2011) The effect of latitude, season and needle-age on the mycota of Scots pine (Pinus sylvestris) in Finland. Silva Fenn 45:301–317

    Google Scholar 

  199. Hashizume Y, Fukuda K, Sahashi N (2010) Effects of summer temperature on fungal endophyte assemblages in Japanese beech (Fagus crenata) leaves in pure beech stands. Botany 88:266–274. doi:10.1139/B09-114

    CAS  Google Scholar 

  200. Zimmerman NB, Vitousek PM (2012) Fungal endophyte communities reflect environmental structuring across a Hawaiian landscape. Proc Natl Acad Sci U S A 109:13022–13027. doi:10.1073/pnas.1209872109

    PubMed Central  CAS  PubMed  Google Scholar 

  201. Helander M, Wäli P, Kuuluvainen T, Saikkonen K (2006) Birch leaf endophytes in managed and natural boreal forests. Can J For Res 36:3239–3245. doi:10.1139/x06-176

    Google Scholar 

  202. Jumpponen A, Jones KL (2009) Massively parallel 454 sequencing indicates hyperdiverse fungal communities in temperate Quercus macrocarpa phyllosphere. New Phytol 184:438–448. doi:10.1111/j.1469-8137.2009.02990.x

    CAS  PubMed  Google Scholar 

  203. Jumpponen A, Jones KL (2010) Seasonally dynamic fungal communities in the Quercus macrocarpa phyllosphere differ between urban and nonurban environments. New Phytol 186:496–513. doi:10.1111/j.1469-8137.2010.03197.x

    CAS  PubMed  Google Scholar 

  204. Matsumura E, Fukuda K (2013) A comparison of fungal endophytic community diversity in tree leaves of rural and urban temperate forests of Kanto district, eastern Japan. Fung Biol 117:191–201. doi:10.1016/j.funbio.2013.01.007

    Google Scholar 

  205. Lau MK, Arnold AE, Johnson NC (2013) Factors influencing communities of foliar fungal endophytes in riparian woody plants. Fung Ecol 6:365–378. doi:10.1016/j.funeco.2013.06.003

    Google Scholar 

  206. Hoffman MT, Arnold AE (2008) Geographic locality and host identity shape fungal endophyte communities in cupressaceous trees. Mycol Res 112:331–344. doi:10.1016/j.mycres.2007.10.014

    CAS  PubMed  Google Scholar 

  207. Johnston PR, Johansen RB, Williams AFR, Wikie JP, Park D (2012) Patterns of fungal diversity in New Zealand Nothofagus forests. Fung Biol 116:401–412. doi:10.1016/j.funbio.2011.12.010

    Google Scholar 

  208. Vaz ABM, Fontenla S, Rocha FS, Brandao LR, Vieira MLA, De Garcia V, Goes-Neto A, Rosa CA (2014) Fungal endophyte β-diversity associated with Myrtaceae species in an Andean Patagonian forest (Argentina) and an Atlantic forest (Brazil). Fung Ecol 8:28–36. doi:10.1016/j.funeco.2013.12.008

    Google Scholar 

  209. Cordier T, Robin C, Capdevielle X, Desprez-Loustau ML, Vacher C (2012) Spatial variability of phyllosphere fungal assemblages: genetic distance predominates over geographic distance in a European beech stand (Fagus sylvatica). Fung Ecol 5:509–520. doi:10.1016/j.funeco.2011.12.004

    Google Scholar 

  210. U’Ren JM, Lutzoni F, Miadlikowska J, Laetsch AD, Arnold AE (2012) Host and geographic structure of endophytic and endolichenic fungi at a continental scale. Am J Bot 99:898–914. doi:10.3732/ajb.1100459

    PubMed  Google Scholar 

  211. Kembel SW, Mueller RC (2014) Plant traits and taxonomy drive host associations in tropical phyllosphere fungal communities. Botany 92:303–311. doi:10.1139/cjb-2013-0194

    Google Scholar 

  212. Kemler M, Garnas J, Wingfield MJ, Gryzenhout M, Pillay K-A et al (2013) Ion torrent PGM as tool for fungal community analysis: a case study of endophytes in Eucalyptus grandis reveals high taxonomic diversity. PLoS One 8:e81718. doi:10.1371/journal.pone.0081718

    PubMed Central  PubMed  Google Scholar 

  213. Gazis R, Rehner S, Chaverri P (2011) Species delimitation in fungal endophyte diversity studies and its implications in ecological and biogeographic inferences. Mol Ecol 20:3001–3013. doi:10.1111/j.1365-294X.2011.05110.x

    PubMed  Google Scholar 

  214. Langenfeld A, Prado S, Nay B, Cruaud C, Lacoste S, Bury E, Hachette F, Hosoya T, Dupont J (2013) Geographic locality greatly influences fungal endophyte communities in Cephalotaxus harringtonia. Fung Biol 117:124–136. doi:10.1016/j.funbio.2012.12.005

    Google Scholar 

  215. Newcombe G (2011) Endophytes in forest management: four challenges. In: Pirttilä AM, Frank AC (eds) Endophytes of forest trees. Springer, Berlin, pp 251–262. doi:10.1007/978-94-007-1599-8_16

    Google Scholar 

  216. Unterseher M, Gazis R, Chaverri P, García Guarniz CF, Zavaleta Tenorio DH (2013) Endophytic fungi from Peruvian highland and lowland habitats form distinctive and host plant-specific assemblages. Biodiv Conserv 22:999–1016. doi:10.1007/s10531-013-0464-x

    Google Scholar 

  217. Prior R, Görges K, Yurkov A, Begerow D (2014) New isolation method for endophytes based on enzyme digestion. Mycol Prog 13:849–856. doi:10.1007/s11557-014-0968-0

    Google Scholar 

  218. García-Guzmán G, Heil M (2014) Life histories of hosts and pathogens predict patterns in tropical fungal plant diseases. New Phytol 201:1106–1120. doi:10.1111/nph.12562

    PubMed  Google Scholar 

  219. Malcolm GM, Kuldau GA, Gugino BK, Jiménez-Gasco MM (2013) Hidden host plant associations of soilborne fungal pathogens: an ecological perspective. Phytopathology 103:538–544. doi:10.1094/PHYTO-08-12-0192-LE

    CAS  PubMed  Google Scholar 

  220. Koch FH, Yemshanov D, Haack RA, Magarey RD (2014) Using a network model to assess risk of forest pest spread via recreational travel. PLoS One 9:e102105. doi:10.1371/journal.pone.0102105

    PubMed Central  PubMed  Google Scholar 

  221. Lenda M, Skórka P, Knops JMH, Moron D, Sutherland WJ, Kuszewska K, Woyciechowski M (2014) Effect of the internet commerce on dispersal modes of invasive alien species. PLoS One 9:e99786. doi:10.1371/journal.pone.0099786

    PubMed Central  PubMed  Google Scholar 

  222. Shaw MW, Pautasso M (2014) Networks and plant disease management: concepts and applications. Ann Rev Phytopathol 52:477–493. doi:10.1146/annurev-phyto-102313-050229

    CAS  Google Scholar 

  223. Hickey GM, Nitschke CR (2005) Crossing disciplinary boundaries in forest research: an international challenge. For Chron 81:321–323. doi:10.5558/tfc81321-3

    Google Scholar 

  224. Dobbertin MK, Nobis MP (2010) Exploring research issues in selected forest journals 1979–2008. Ann For Sci 67:800. doi:10.1051/forest/2010052

    Google Scholar 

  225. Bojović S, Matić R, Popović Z, Smiljanić M, Stefanović M, Vidaković V (2014) An overview of forestry journals in the period 2006–2010 as basis for ascertaining research trends. Scientometrics 98:1331–1346. doi:10.1007/s11192-013-1171-9

    Google Scholar 

  226. Pautasso M, Dehnen-Schmutz K, Holdenrieder O, Pietravalle S, Salama N, Jeger MJ, Lange E, Hehl-Lange S (2010) Plant health and global change—some implications for landscape management. Biol Rev 85:729–755. doi:10.1111/j.1469-185X.2010.00123.x

    PubMed  Google Scholar 

  227. Rigot T, van Halder I, Jactel H (2014) Landscape diversity slows the spread of an invasive forest pest species. Ecography 37:648–658. doi:10.1111/j.1600-0587.2013.00447.x

    Google Scholar 

  228. Helander M, Ahlholm J, Sieber TN, Hinneri S, Saikkonen K (2007) Fragmented environment affects birch leaf endophytes. New Phytol 175:547–553. doi:10.1111/j.1469-8137.2007.02110.x

    CAS  PubMed  Google Scholar 

  229. Dillon WW, Haas SE, Rizzo DM, Meentemeyer RK (2014) Perspectives of spatial scale in a wildland forest epidemic. Eur J Plant Pathol 138:449–465. doi:10.1007/s10658-013-0376-3

    Google Scholar 

  230. Cobb RC, Eviner VT, Rizzo DM (2013) Mortality and community changes drive sudden oak death impacts on litterfall and soil nitrogen cycling. New Phytol 200:422–431. doi:10.1111/nph.12370

    CAS  PubMed  Google Scholar 

  231. Jönsson MT, Thor G (2012) Estimating coextinction risks from epidemic tree death: affiliate lichen communities among diseased host tree populations of Fraxinus excelsior. PLoS One 7:e45701. doi:10.1371/journal.pone.0045701

    PubMed Central  PubMed  Google Scholar 

  232. Lõhmus A, Runnel K (2014) Ash dieback can rapidly eradicate isolated epiphyte populations in production forests: a case study. Biol Conserve 169:185–188. doi:10.1016/j.biocon.2013.11.031

    Google Scholar 

  233. Mitchell RJ, Beaton JK, Bellamy PE, Broome A, Chetcuti J, Eaton S, Ellis CJ, Gimona A, Harmer R, Hester AJ, Hewison RL, Hodgetts NG, Iason GR, Kerr G, Littlewood NA, Newey S, Potts JM, Pozsgai G, Ray D, Sim DA, Stockan JA, Taylor AFS, Woodward S (2014) Ash dieback in the UK: a review of the ecological and conservation implications and potential management options. Biol Conserv 175:95–109. doi:10.1016/j.biocon.2014.04.019

    Google Scholar 

  234. Tomback DF, Achuff P (2010) Blister rust and western forest biodiversity: ecology, values and outlook for white pines. For Pathol 40:186–225. doi:10.1111/j.1439-0329.2010.00655.x

    Google Scholar 

  235. Garneau DE, Lawler ME, Rumpf AS, Weyburne ES, Cuppernull TM, Boe AG (2012) Potential effects of beech bark disease on small mammals and invertebrates in northeastern US forests. Northeast Nat 19:391–410. doi:10.1656/045.019.0303

    Google Scholar 

  236. Lovett GM, Arthur MA, Weathers KC, Griffin JM (2013) Effects of introduced insects and diseases on forest ecosystems in the Catskill Mountains of New York. Ann NY Acad Sci 1298:66–77. doi:10.1111/nyas.12215

    PubMed  Google Scholar 

  237. Brunet J, Bukina Y, Hedwall PO, Holmström E, von Oheimb G (2014) Pathogen induced disturbance and succession in temperate forests: evidence from a 100-year data set in southern Sweden. Basic Appl Ecol 15:114–121. doi:10.1016/j.baae.2014.02.002

    Google Scholar 

  238. Sieber TN (1989) Endophytic fungi in twigs of healthy and diseased Norway spruce and white fir. Mycol Res 92:322–326

    Google Scholar 

  239. Ragazzi A, Moricca S, Capretti P, Dellavalle I, Mancini F, Turco E (2001) Endophytic fungi in Quercus cerris: isolation frequency in relation to phenological phase, tree health and the organ affected. Phytopathol Medit 40:165–171

    Google Scholar 

  240. Ragazzi A, Moricca S, Capretti P, Dellavalle I, Turco E (2003) Differences in composition of endophytic mycobiota in twigs and leaves of healthy and declining Quercus species in Italy. For Pathol 33:31–38. doi:10.1046/j.1439-0329.2003.3062003.x

    Google Scholar 

  241. Baird RE, Watson CE, Woolfolk S (2007) Microfungi from bark of healthy and damaged American beech, fraser fir, and eastern hemlock trees during an all taxa biodiversity inventory in forests of the Great Smoky Mountains National Park. Southeast Nat 6:67–82. doi:10.1656/1528-7092(2007)6[67:MFBOHA]2.0.CO;2

    Google Scholar 

  242. Giordano L, Gonthier P, Varese GC, Miserere L, Nicolotti G (2009) Mycobiota inhabiting sapwood of healthy and declining Scots pine (Pinus sylvestris L.) trees in the Alps. Fung Divers 38:69–83

    Google Scholar 

  243. Kowalski T, Andruch K (2012) Mycobiota in needles of Abies alba with and without symptoms of Herpotrichia needle browning. For Pathol 42:183–190. doi:10.1111/j.1439-0329.2011.00738.x

    Google Scholar 

  244. Moricca S, Ginetti B, Ragazzi A (2012) Species- and organ-specificity in endophytes colonizing healthy and declining Mediterranean oaks. Phytopathol Medit 51:587–598

    Google Scholar 

  245. Takemoto S, Masuya H, Tabata M (2014) Endophytic fungal communities in the bark of canker-diseased Toxicodendron vernicifluum. Fung Ecol 7:1–8. doi:10.1016/j.funeco.2013.10.004

    Google Scholar 

  246. Mills P, Dehnen-Schmutz K, Ilbery B, Jeger M, Jones G, Little R, MacLeod A, Parker S, Pautasso M, Pietravalle S, Maye D (2011) Integrating natural and social science perspectives on plant disease risk, management and policy formulation. Phil Trans Roy Soc B 366:2035–2044. doi:10.1098/rstb.2010.0411

    Google Scholar 

  247. Lee CA, Alexander JM, Frankel SJ, Valachovic Y (2012) Evolution of an invasive species research program and implications for large-scale management of a non-native, invasive plant pathogen. Environ Nat Resour Res 2:99–111

    Google Scholar 

  248. Pautasso M, Dehnen-Schmutz K, Ilbery B, Jeger MJ, Jones G, Little R, MacLeod A, Maye D, Parker S, Pietravalle S, Mills P (2012) Plant health challenges for a sustainable land use and rural economy. CAB Rev 7:63. doi:10.1079/PAVSNNR20127063

    Google Scholar 

  249. Jactel H, Branco M, Duncker P, Gardiner B, Grodzki W, Langström B, Moreira F, Netherer S, Nicoll B, Orazio C, Piou D, Schelhaas MJ, Tojic K (2012) A multi-criteria risk analysis to evaluate impacts of forest management alternatives on forest health in Europe. Ecol Soc 17:52

    Google Scholar 

  250. Wulff S, Lindelöw A, Lundin L, Hansson P, Axelsson AL, Barklund P, Wijk S, Ståhl G (2012) Adapting forest health assessments to changing perspectives on threats—a case example from Sweden. Environ Monit Assess 184:2453–2464. doi:10.1007/s10661-011-2130-7

    PubMed  Google Scholar 

  251. Burdon JJ, Thrall PH, Ericson L (2013) Genes, communities & invasive species: understanding the ecological and evolutionary dynamics of host–pathogen interactions. Curr Opin Plant Biol 16:400–405. doi:10.1016/j.pbi.2013.05.003

    CAS  PubMed  Google Scholar 

  252. Hansen EM (2008) Alien forest pathogens: Phytophthora species are changing world forests. Boreal Environ Res 13:33–41

    Google Scholar 

  253. Horie T, Haight RG, Homans FR, Venette RC (2013) Optimal strategies for the surveillance and control of forest pathogens: a case study with oak wilt. Ecol Econ 86:78–85. doi:10.1016/j.ecolecon.2012.09.017

    Google Scholar 

  254. Kearns HSJ, Jacobi WR, Reich RM, Flynn RL, Burns KS, Geils BW (2014) Risk of white pine blister rust to limber pine in Colorado and Wyoming, USA. For Pathol 44:21–38. doi:10.1111/efp.12065

    Google Scholar 

  255. Manion PD (2003) Evolution of concepts in forest pathology. Phytopathology 93:1052–1055. doi:10.1094/PHYTO.2003.93.8.1052

    PubMed  Google Scholar 

  256. Rizzo DM, Garbelotto M, Hansen EM (2005) Phytophthora ramorum: integrative research and management of an emerging pathogen in California and Oregon forests. Ann Rev Phytopathol 43:309–335. doi:10.1146/annurev.phyto.42.040803.140418

    Google Scholar 

  257. Hamelin RC (2006) Molecular epidemiology of forest pathogens: from genes to landscape. Can J Plant Pathol 28:167–181. doi:10.1080/07060660609507285

    CAS  Google Scholar 

  258. Desprez-Loustau ML, Marçais B, Nageleisen LM, Piou D, Vannini A (2006) Interactive effects of drought and pathogens in forest trees. Ann For Sci 63:597–612. doi:10.1051/forest:2006040

    Google Scholar 

  259. Desprez-Loustau ML, Robin C, Buée M, Courtecuisse R, Garbaye J, Suffert F, Sache I, Rizzo DM (2007) The fungal dimension of biological invasions. Trends Ecol Evol 22:472–480. doi:10.1016/j.tree.2007.04.005

    PubMed  Google Scholar 

  260. Jeger MJ, Pautasso M, Holdenrieder O, Shaw MW (2007) Modelling disease spread and control in networks: implications for plant sciences. New Phytol 174:279–297. doi:10.1111/j.1469-8137.2007.02028.x

    PubMed  Google Scholar 

  261. La Porta N, Capretti P, Thomsen IM, Kasanen R, Hietala AM, Von Weissenberg K (2008) Forest pathogens with higher damage potential due to climate change in Europe. Can J Plant Pathol 30:177–195. doi:10.1080/07060661.2008.10540534

    Google Scholar 

  262. Lonsdale D, Pautasso M, Holdenrieder O (2008) Wood-decaying fungi in the forest: conservation needs and management options. Eur J For Res 127:1–22. doi:10.1007/s10342-007-0182-6

    Google Scholar 

  263. Rackham O (2008) Ancient woodlands: modern threats. New Phytol 180:571–586. doi:10.1111/j.1469-8137.2008.02579.x

    PubMed  Google Scholar 

  264. Loo JA (2009) Ecological impacts of non-indigenous invasive fungi as forest pathogens. Biol Invasion 11:81–96. doi:10.1007/s10530-008-9321-3

    Google Scholar 

  265. Ostry ME, Laflamme G (2009) Fungi and diseases—natural components of healthy forests. Botany 87:22–25. doi:10.1139/B08-090

    Google Scholar 

  266. MacLeod A, Pautasso M, Jeger MJ, Haines-Young R (2010) Evolution of the international regulation of plant pests and challenges for future plant health. Food Sec 2:49–70. doi:10.1007/s12571-010-0054-7

    Google Scholar 

  267. Grünig CR, Queloz V, Sieber TN (2011) Structure of diversity in dark septate endophytes: from species to genes. In: Pirttilä AM, Frank AC (eds) Endophytes of forest trees. Springer, Berlin, pp 3–30. doi:10.1007/978-94-007-1599-8_1

    Google Scholar 

  268. Stenlid J, Oliva J, Boberg JB, Hopkins AJM (2011) Emerging diseases in European forest ecosystems and responses in society. Forests 2:486–504. doi:10.3390/f2020486

    Google Scholar 

  269. Sturrock RN, Frankel SJ, Brown AV, Hennon PE, Kliejunas JT, Lewis KJ, Worrall JJ, Woods AJ (2011) Climate change and forest diseases. Plant Pathol 60:133–149. doi:10.1111/j.1365-3059.2010.02406.x

    Google Scholar 

  270. Döring TF, Pautasso M, Finckh MR, Wolfe MS (2012) Concepts of plant health—reviewing and challenging the foundations of plant protection. Plant Pathol 61:1–15. doi:10.1111/j.1365-3059.2011.02501.x

    Google Scholar 

  271. Hansen EM, Reeser PW, Sutton W (2012) Phytophthora beyond agriculture. Ann Rev Phytopathol 50:359–378. doi:10.1146/annurev-phyto-081211-172946

    CAS  Google Scholar 

  272. Waller M (2013) Drought, disease, defoliation and death: forest pathogens as agents of past vegetation change. J Quatern Sci 28:336–342. doi:10.1002/jqs.2631

    Google Scholar 

  273. Oliva J, Stenlid J, Martínez-Vilalta J (2014) The effect of fungal pathogens on the water and carbon economy of trees: implications for drought-induced mortality. New Phytol 203:1028–1035. doi:10.1111/nph.12857

    CAS  PubMed  Google Scholar 

  274. Grünwald NJ, Goss E (2011) Evolution and population genetics of exotic and re-emerging pathogens: novel tools and approaches. Ann Rev Phytopathol 49:249–267. doi:10.1146/annurev-phyto-072910-095246

    Google Scholar 

  275. Lindahl BD, Kuske CR (2013) Metagenomics for study of fungal ecology. In: Martin F (ed) The ecological genomics of fungi. Wiley, Chichester, pp 279–303. doi:10.1002/9781118735893.ch13

    Google Scholar 

  276. Taylor DL, Hollingsworth TN, McFarland JW, Lennon NJ, Nusbaum C, Ruess RW (2014) A first comprehensive census of fungi in soil reveals both hyperdiversity and fine-scale niche partitioning. Ecol Monogr 84:3–20. doi:10.1890/12-1693.1

    Google Scholar 

  277. Peay KG, Baraloto C, Fine PVA (2013) Strong coupling of plant and fungal community structure across western Amazonian rainforests. ISME J 7:1852–1861. doi:10.1038/ismej.2013.66

    PubMed Central  CAS  PubMed  Google Scholar 

  278. Vannini A, Bruni N, Tomassini A, Franceschini S, Vettraino AM (2013) Pyrosequencing of environmental soil samples reveals biodiversity of the Phytophthora resident community in chestnut forests. FEMS Microbiol Ecol 85:433–442. doi:10.1111/1574-6941.12132

    CAS  PubMed  Google Scholar 

  279. Mueller RC, Paula FS, Mirza BS, Rodrigues JLM, Nüsslein K, Bohannan BJM (2014) Links between plant and fungal communities across a deforestation chronosequence in the Amazon rainforest. ISME J 8:1548–1550. doi:10.1038/ismej.2013.253

    CAS  PubMed  Google Scholar 

  280. Lee-Cruz L, Edwards DP, Tripathi BM, Adams JM (2013) Impact of logging and forest conversion to oil palm plantations on soil bacterial communities in Borneo. Appl Environ Microbiol 79:7290–7297. doi:10.1128/AEM. 02541-13

    PubMed Central  CAS  PubMed  Google Scholar 

  281. Coince A, Cordier T, Lengellé J, Defossez E, Vacher C, Robin C, Buée M, Marçais B (2014) Leaf and root-associated fungal assemblages do not follow similar elevational diversity patterns. PLoS One 9:e100668. doi:10.1371/journal.pone.0100668

    PubMed Central  PubMed  Google Scholar 

  282. Fierer N, Leff JW, Adams BJ, Nielsen UN, Bates ST, Lauber CL, Owens S, Gilbert JA, Wall DH, Caporaso JG (2012) Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc Natl Acad Sci U S A 109:21390–21395. doi:10.1073/pnas.1215210110

    PubMed Central  CAS  PubMed  Google Scholar 

  283. Damon C, Lehembre F, Oger-Desfeux C, Luis P, Ranger J, Fraissinet-Tachet L, Marmeisse R (2012) Metatranscriptomics reveals the diversity of genes expressed by eukaryotes in forest soils. PLoS One 7:e28967. doi:10.1371/journal.pone.0028967

    PubMed Central  CAS  PubMed  Google Scholar 

  284. Eyre CA, Kozanitas M, Garbelotto M (2013) Population dynamics of aerial and terrestrial populations of Phytophthora ramorum in a California forest under different climatic conditions. Phytopathology 103:1141–1152. doi:10.1094/PHYTO-11-12-0290-R

    CAS  PubMed  Google Scholar 

  285. Quinn L, O'Neill PA, Harrison J, Paskiewicz KH, McCracken AR, Cooke LR, Grant MR, Studholme DJ (2013) Genome-wide sequencing of Phytophthora lateralis reveals genetic variation among isolates from Lawson cypress (Chamaecyparis lawsoniana) in Northern Ireland. FEMS Microbiol Lett 344:179–185. doi:10.1111/1574-6968.12179

    CAS  PubMed  Google Scholar 

  286. Ross-Davis AL, Stewart JE, Hanna JW, Kim MS, Knaus BJ, Cronn R, Rai H, Richardson BA, McDonald GI, Klopfenstein NB (2013) Transcriptome of an Armillaria root disease pathogen reveals candidate genes involved in host substrate utilization at the host–pathogen interface. For Pathol 43:468–477. doi:10.1111/efp.12056

    Google Scholar 

Download references

Acknowledgments

Many thanks to J. Talbot and E. Sayer for organizing the symposium on the forest microbiome at the British Ecological Society Centenary Meeting and this special issue and also to A. Gross, C. Grünig, M. Jeger, J. Landolt, I. Mohammed, K. Noetzli, V. Queloz, L. Paul, M. Schmid, T. Sieber and S. Stroheker for their time and discussions as well as to V. Queloz and the anonymous reviewers for their helpful comments on the previous draft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Pautasso.

Additional information

The positions and opinions presented in this article are those of the authors alone and are not intended to represent the views or scientific works of EFSA.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pautasso, M., Schlegel, M. & Holdenrieder, O. Forest Health in a Changing World. Microb Ecol 69, 826–842 (2015). https://doi.org/10.1007/s00248-014-0545-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-014-0545-8

Keywords

Navigation